Skip to main content

Abstract

The “genetic choreas” consist of a heterogeneous group of disorders, similar in that chorea is typically the most prominent or presenting clinical feature and that degeneration of the striatum is the most characteristic neuropathological feature. Here we discuss the prototypical hereditary choreiform disorder, Huntington’s disease (HD), and a series of other familial disorders in which chorea is more or less part of the clinical syndrome and that may resemble HD, including Huntington’s disease-like 2 (HDL2), the neuroacanthocytoses, benign hereditary chorea, the iron accumulation diseases, and paroxysmal movement disorders. We conclude by providing comprehensive tables of the dominant and nondominant genetic choreas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huntington G. On chorea. Med Surg Report Philadelphia. 1872;26:317–21.

    Google Scholar 

  2. Bates G, Tabrizi S, Jones L. Huntington’s disease. 4th ed. Oxford/New York: Oxford University Press; 2014.

    Google Scholar 

  3. Ross CA, Pantelyat A, Kogan J, Brandt J. Determinants of functional disability in Huntington’s disease: role of cognitive and motor dysfunction. Mov Disord. 2014;29:1351–8.

    PubMed  Google Scholar 

  4. Hoth KF, Paulsen JS, Moser DJ, Tranel D, Clark LA, Bechara A. Patients with Huntington’s disease have impaired awareness of cognitive, emotional, and functional abilities. J Clin Exp Neuropsychol. 2007;29:365–76.

    PubMed  Google Scholar 

  5. Warby SC, Visscher H, Collins JA, Doty CN, Carter C, Butland SL, et al. HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur J Hum Genet. 2011;19:561–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Nakashima K, Watanabe Y, Kusumi M, Nanba E, Maeoka Y, Nakagawa M, et al. Epidemiological and genetic studies of Huntington’s disease in the San-in area of Japan. Neuroepidemiology. 1996;15:126–31.

    CAS  PubMed  Google Scholar 

  7. Masuda N, Goto J, Murayama N, Watanabe M, Kondo I, Kanazawa I. Analysis of triplet repeats in the huntingtin gene in Japanese families affected with Huntington’s disease. J Med Genet. 1995;32:701–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Adachi Y, Nakashima K. Population genetic study of Huntington’s disease–prevalence and founder’s effect in the San-in area, western Japan. Nihon Rinsho. 1999;57:900–4.

    CAS  PubMed  Google Scholar 

  9. van der Burg JM, Bjorkqvist M, Brundin P. Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol. 2009;8:765–74.

    PubMed  Google Scholar 

  10. Martin B, Golden E, Keselman A, Stone M, Mattson MP, Egan JM, et al. Therapeutic perspectives for the treatment of Huntington’s disease: treating the whole body. Histol Histopathol. 2008;23:237–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Cai H, Cong WN, Ji S, Rothman S, Maudsley S, Martin B. Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr Alzheimer Res. 2012;9:5–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Aziz NA, Pijl H, Frolich M, Snel M, Streefland TC, Roelfsema F, et al. Systemic energy homeostasis in Huntington’s disease patients. J Neurol Neurosurg Psychiatry. 2010;81:1233–7.

    PubMed  Google Scholar 

  13. Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, et al. Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain. 2003;126:946–55.

    PubMed  Google Scholar 

  14. Wang SC, Lee-Chen GJ, Wang CK, Chen CM, Tang LM, Wu YR. Markedly asymmetrical parkinsonism as a leading feature of adult-onset Huntington’s disease. Mov Disord. 2004;19:854–6.

    PubMed  Google Scholar 

  15. Hobbs NZ, Henley SM, Ridgway GR, Wild EJ, Barker RA, Scahill RI, et al. The progression of regional atrophy in premanifest and early Huntington’s disease: a longitudinal voxel-based morphometry study. J Neurol Neurosurg Psychiatry. 2010;81:756–63.

    PubMed  Google Scholar 

  16. Aylward EH, Nopoulos PC, Ross CA, Langbehn DR, Pierson RK, Mills JA, et al. Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry. 2011;82:405–10.

    PubMed Central  PubMed  Google Scholar 

  17. Reading SA, Dziorny AC, Peroutka LA, Schreiber M, Gourley LM, Yallapragada V, et al. Functional brain changes in presymptomatic Huntington’s disease. Ann Neurol. 2004;55:879–83.

    PubMed  Google Scholar 

  18. Biglan KM, Ross CA, Langbehn DR, Aylward EH, Stout JC, Queller S, et al. Motor abnormalities in premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord. 2009;24:1763–72.

    PubMed Central  PubMed  Google Scholar 

  19. Bechtel N, Scahill RI, Rosas HD, Acharya T, van den Bogaard SJ, Jauffret C, et al. Tapping linked to function and structure in premanifest and symptomatic Huntington disease. Neurology. 2010;75:2150–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Rupp J, Dzemidzic M, Blekher T, Bragulat V, West J, Jackson J, et al. Abnormal error-related antisaccade activation in premanifest and early manifest Huntington disease. Neuropsychology. 2011;25:306–18.

    PubMed Central  PubMed  Google Scholar 

  21. Duff K, Paulsen J, Mills J, Beglinger LJ, Moser DJ, Smith MM, et al. Mild cognitive impairment in prediagnosed Huntington disease. Neurology. 2010;75:500–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Goodman AO, Rogers L, Pilsworth S, McAllister CJ, Shneerson JM, Morton AJ, et al. Asymptomatic sleep abnormalities are a common early feature in patients with Huntington’s disease. Curr Neurol Neurosci Rep. 2011;11:211–7.

    PubMed  Google Scholar 

  23. Rosenblatt A. Neuropsychiatry of Huntington’s disease. Dialogues Clin Neurosci. 2007;9:191–7.

    PubMed Central  PubMed  Google Scholar 

  24. Anderson KE, Louis ED, Stern Y, Marder KS. Cognitive correlates of obsessive and compulsive symptoms in Huntington’s disease. Am J Psychiatry. 2001;158:799–801.

    CAS  PubMed  Google Scholar 

  25. Papoutsi M, Labuschagne I, Tabrizi SJ, Stout JC. The cognitive burden in Huntington’s disease: pathology, phenotype, and mechanisms of compensation. Mov Disord. 2014;29:673–83.

    PubMed  Google Scholar 

  26. Craufurd D, Thompson JC, Snowden JS. Behavioral changes in Huntington disease. Neuropsychiatry Neuropsychol Behav Neurol. 2001;14:219–26.

    CAS  PubMed  Google Scholar 

  27. Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A. Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Neuroanat. 2004;27:143–64.

    CAS  PubMed  Google Scholar 

  28. Albin RL, Reiner A, Anderson KD, Dure LST, Handelin B, Balfour R, et al. Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann Neurol. 1992;31:425–30.

    CAS  PubMed  Google Scholar 

  29. Starr PA, Kang GA, Heath S, Shimamoto S, Turner RS. Pallidal neuronal discharge in Huntington’s disease: support for selective loss of striatal cells originating the indirect pathway. Exp Neurol. 2008;211:227–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Thu DC, Oorschot DE, Tippett LJ, Nana AL, Hogg VM, Synek BJ, et al. Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain. 2010;133:1094–110.

    PubMed  Google Scholar 

  31. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991;352:77–9.

    PubMed  Google Scholar 

  32. Kenney C, Powell S, Jankovic J. Autopsy-proven Huntington’s disease with 29 trinucleotide repeats. Mov Disord. 2007;22:127–30.

    PubMed  Google Scholar 

  33. Groen JL, de Bie RM, Foncke EM, Roos RA, Leenders KL, Tijssen MA. Late-onset Huntington disease with intermediate CAG repeats: true or false? J Neurol Neurosurg Psychiatry. 2010;81:228–30.

    PubMed  Google Scholar 

  34. Andrich J, Arning L, Wieczorek S, Kraus PH, Gold R, Saft C. Huntington’s disease as caused by 34 CAG repeats. Mov Disord. 2008;23:879–81.

    PubMed  Google Scholar 

  35. Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ, et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet. 1996;59:16–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Shelbourne PF, Keller-McGandy C, Bi WL, Yoon SR, Dubeau L, Veitch NJ, et al. Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain. Hum Mol Genet. 2007;16:1133–42.

    CAS  PubMed  Google Scholar 

  37. Aronin N, Chase K, Young C, Sapp E, Schwarz C, Matta N, et al. CAG expansion affects the expression of mutant Huntingtin in the Huntington’s disease brain. Neuron. 1995;15:1193–201.

    CAS  PubMed  Google Scholar 

  38. Nahhas F, Garbern J, Feely S, Feldman GL. An intergenerational contraction of a fully penetrant Huntington disease allele to a reduced penetrance allele: interpretation of results and significance for risk assessment and genetic counseling. Am J Med Genet A. 2009;149A:732–6.

    CAS  PubMed  Google Scholar 

  39. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet. 1993;4:387–92.

    CAS  PubMed  Google Scholar 

  40. Myers RH, MacDonald ME, Koroshetz WJ, Duyao MP, Ambrose CM, Taylor SA, et al. De novo expansion of a (CAG)n repeat in sporadic Huntington’s disease. Nat Genet. 1993;5:168–73.

    CAS  PubMed  Google Scholar 

  41. Andresen JM, Gayan J, Djousse L, Roberts S, Brocklebank D, Cherny SS, et al. The relationship between CAG repeat length and age of onset differs for Huntington’s disease patients with juvenile onset or adult onset. Ann Hum Genet. 2007;71:295–301.

    CAS  PubMed  Google Scholar 

  42. Rosas HD, Reuter M, Doros G, Lee SY, Triggs T, Malarick K, et al. A tale of two factors: what determines the rate of progression in Huntington’s disease? A longitudinal MRI study. Mov Disord. 2011;26:1691–7.

    PubMed Central  PubMed  Google Scholar 

  43. Ravina B, Romer M, Constantinescu R, Biglan K, Brocht A, Kieburtz K, et al. The relationship between CAG repeat length and clinical progression in Huntington’s disease. Mov Disord. 2008;23:1223–7.

    PubMed  Google Scholar 

  44. Rosenblatt A, Kumar BV, Mo A, Welsh CS, Margolis RL, Ross CA. Age, CAG repeat length, and clinical progression in Huntington’s disease. Mov Disord. 2012;27:272–6.

    PubMed  Google Scholar 

  45. Gusella JF, MacDonald ME. Huntington’s disease: the case for genetic modifiers. Genome Med. 2009;1:80.

    PubMed Central  PubMed  Google Scholar 

  46. Wojciechowska M, Krzyzosiak WJ. CAG repeat RNA as an auxiliary toxic agent in polyglutamine disorders. RNA Biol. 2011;8:565–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Rudnicki DD, Margolis RL, Pearson CE, Krzyzosiak WJ. Diced triplets expose neurons to RISC. PLoS Genet. 2012;8:e1002545.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Fiszer A, Krzyzosiak WJ. RNA toxicity in polyglutamine disorders: concepts, models, and progress of research. J Mol Med (Berl). 2013;91:683–91.

    CAS  Google Scholar 

  49. Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev. 2010;90:905–81.

    CAS  PubMed  Google Scholar 

  50. Schulte J, Littleton JT. The biological function of the Huntingtin protein and its relevance to Huntington’s disease pathology. Curr Trends Neurol. 2011;5:65–78.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Wild EJ, Tabrizi SJ. Targets for future clinical trials in Huntington’s disease: what’s in the pipeline? Mov Disord. 2014;29:1434–45.

    CAS  PubMed  Google Scholar 

  52. Martin DD, Ladha S, Ehrnhoefer DE, Hayden MR. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. 2015;38:26–35.

    CAS  PubMed  Google Scholar 

  53. Cortes CJ, La Spada AR. The many faces of autophagy dysfunction in Huntington’s disease: from mechanism to therapy. Drug Discov Today. 2014;19:963–71.

    CAS  PubMed  Google Scholar 

  54. Appl T, Kaltenbach L, Lo DC, Terstappen GC. Targeting mutant huntingtin for the development of disease-modifying therapy. Drug Discov Today. 2012;17:1217–23.

    CAS  PubMed  Google Scholar 

  55. Yu D, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW, Swayze EE, et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell. 2012;150:895–908.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Sah DW, Aronin N. Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest. 2011;121:500–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Pfister EL, Kennington L, Straubhaar J, Wagh S, Liu W, DiFiglia M, et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol. 2009;19:774–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Munroe SH, Zhu J. Overlapping transcripts, double-stranded RNA and antisense regulation: a genomic perspective. Cell Mol Life Sci. 2006;63:2102–18.

    CAS  PubMed  Google Scholar 

  59. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74:1031–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S, Arar K, et al. Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol. 2009;27:478–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Aronin N. Target selectivity in mRNA silencing. Gene Ther. 2006;13:509–16.

    CAS  PubMed  Google Scholar 

  62. Margolis RL, O’Hearn E, Rosenblatt A, Willour V, Holmes SE, Franz ML, et al. A disorder similar to Huntington’s disease is associated with a novel CAG repeat expansion. Ann Neurol. 2001;50:373–80.

    CAS  Google Scholar 

  63. Schneider SA, Marshall KE, Xiao J, LeDoux MS. JPH3 repeat expansions cause a progressive akinetic-rigid syndrome with severe dementia and putaminal rim in a five-generation African-American family. Neurogenetics. 2012;13:133–40.

    PubMed Central  PubMed  Google Scholar 

  64. Walker RH, Rasmussen A, Rudnicki D, Holmes SE, Alonso E, Matsuura T, et al. Huntington’s disease–like 2 can present as chorea-acanthocytosis. Neurology. 2003;61:1002–4.

    CAS  PubMed  Google Scholar 

  65. Rudnicki DD, Pletnikova O, Vonsattel JP, Ross CA, Margolis RL. A comparison of huntington disease and huntington disease-like 2 neuropathology. J Neuropathol Exp Neurol. 2008;67:366–74.

    PubMed  Google Scholar 

  66. Greenstein PE, Vonsattel JP, Margolis RL, Joseph JT. Huntington’s disease like-2 neuropathology. Mov Disord. 2007;22:1416–23.

    PubMed  Google Scholar 

  67. Rodrigues GG, Walker RH, Brice A, Cazeneuve C, Russaouen O, Teive HA, et al. Huntington’s disease-like 2 in Brazil–report of 4 patients. Mov Disord. 2008;23:2244–7.

    PubMed  Google Scholar 

  68. Paradisi I, Ikonomu V, Arias S. Huntington disease-like 2 (HDL2) in Venezuela: frequency and ethnic origin. J Hum Genet. 2013;58:3–6.

    CAS  PubMed  Google Scholar 

  69. Margolis RL, Holmes SE, Rosenblatt A, Gourley L, O’Hearn E, Ross CA, et al. Huntington’s Disease-like 2 (HDL2) in North America and Japan. Ann Neurol. 2004;56:670–4.

    CAS  PubMed  Google Scholar 

  70. Seixas AI, Holmes SE, Takeshima H, Pavlovich A, Sachs N, Pruitt JL, et al. Loss of junctophilin-3 contributes to Huntington disease-like 2 pathogenesis. Ann Neurol. 2012;71:245–57.

    CAS  PubMed  Google Scholar 

  71. Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL. Huntington’s disease–like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol. 2007;61:272–82.

    CAS  PubMed  Google Scholar 

  72. Wilburn B, Rudnicki DD, Zhao J, Weitz TM, Cheng Y, Gu X, et al. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron. 2011;70:427–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet. 1999;8:2047–53.

    CAS  PubMed  Google Scholar 

  74. Stevanin G, Brice A. Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum. 2008;7:170–8.

    CAS  PubMed  Google Scholar 

  75. Nolte D, Sobanski E, Wissen A, Regula JU, Lichy C, Muller U. Spinocerebellar ataxia type 17 associated with an expansion of 42 glutamine residues in TATA-box binding protein gene. J Neurol Neurosurg Psychiatry. 2010;81:1396–9.

    CAS  PubMed  Google Scholar 

  76. Nanda A, Jackson SA, Schwankhaus JD, Metzer WS. Case of spinocerebellar ataxia type 17 (SCA17) associated with only 41 repeats of the TATA-binding protein (TBP) gene. Mov Disord. 2007;22:436.

    PubMed  Google Scholar 

  77. Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N, et al. SCA17 homozygote showing Huntington’s disease-like phenotype. Ann Neurol. 2004;55:281–6.

    CAS  PubMed  Google Scholar 

  78. Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, et al. Intergenerational instability and marked anticipation in SCA-17. Neurology. 2003;61:1441–3.

    CAS  PubMed  Google Scholar 

  79. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994;6:9–13.

    CAS  PubMed  Google Scholar 

  80. Ikeuchi T, Onodera O, Oyake M, Koide R, Tanaka H, Tsuji S. Dentatorubral-pallidoluysian atrophy (DRPLA): close correlation of CAG repeat expansions with the wide spectrum of clinical presentations and prominent anticipation. Semin Cell Biol. 1995;6:37–44.

    CAS  PubMed  Google Scholar 

  81. Tsuji S. Dentatorubral-pallidoluysian atrophy. Handb Clin Neurol. 2012;103:587–94.

    PubMed  Google Scholar 

  82. Burke JR, Wingfield MS, Lewis KE, Roses AD, Lee JE, Hulette C, et al. The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat Genet. 1994;7:521–4.

    CAS  PubMed  Google Scholar 

  83. Gras D, Jonard L, Roze E, Chantot-Bastaraud S, Koht J, Motte J, et al. Benign hereditary chorea: phenotype, prognosis, therapeutic outcome and long term follow-up in a large series with new mutations in the TITF1/NKX2-1 gene. J Neurol Neurosurg Psychiatry. 2012;83:956–62.

    PubMed  Google Scholar 

  84. Armstrong MJ, Shah BB, Chen R, Angel MJ, Lang AE. Expanding the phenomenology of benign hereditary chorea: evolution from chorea to myoclonus and dystonia. Mov Disord. 2011;26:2296–7.

    PubMed  Google Scholar 

  85. Breedveld GJ, van Dongen JW, Danesino C, Guala A, Percy AK, Dure LS, et al. Mutations in TITF-1 are associated with benign hereditary chorea. Hum Mol Genet. 2002;11:971–9.

    CAS  PubMed  Google Scholar 

  86. Devos D, Vuillaume I, de Becdelievre A, de Martinville B, Dhaenens CM, Cuvellier JC, et al. New syndromic form of benign hereditary chorea is associated with a deletion of TITF-1 and PAX-9 contiguous genes. Mov Disord. 2006;21:2237–40.

    PubMed  Google Scholar 

  87. Willemsen MA, Breedveld GJ, Wouda S, Otten BJ, Yntema JL, Lammens M, et al. Brain-Thyroid-Lung syndrome: a patient with a severe multi-system disorder due to a de novo mutation in the thyroid transcription factor 1 gene. Eur J Pediatr. 2005;164:28–30.

    PubMed  Google Scholar 

  88. Bauer P, Kreuz FR, Burk K, Saft C, Andrich J, Heilemann H, et al. Mutations in TITF1 are not relevant to sporadic and familial chorea of unknown cause. Mov Disord. 2006;21:1734–7.

    PubMed  Google Scholar 

  89. Asmus F, Horber V, Pohlenz J, Schwabe D, Zimprich A, Munz M, et al. A novel TITF-1 mutation causes benign hereditary chorea with response to levodopa. Neurology. 2005;64:1952–4.

    CAS  PubMed  Google Scholar 

  90. Dobson-Stone C, Rampoldi L, Bader B, Velayos BA, Walker RH, Danek A, et al. Chorea- acanthocytosis. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2002:1993–2015.

    Google Scholar 

  91. Neutel D, Miltenberger-Miltenyi G, Silva I, de Carvalho M. Chorea-acanthocytosis presenting as motor neuron disease. Muscle Nerve. 2012;45:293–5.

    PubMed  Google Scholar 

  92. Sorrentino G, De Renzo A, Miniello S, Nori O, Bonavita V. Late appearance of acanthocytes during the course of chorea-acanthocytosis. J Neurol Sci. 1999;163:175–8.

    CAS  PubMed  Google Scholar 

  93. Rampoldi L, Dobson-Stone C, Rubio JP, Danek A, Chalmers RM, Wood NW, et al. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet. 2001;28:119–20.

    CAS  PubMed  Google Scholar 

  94. Foller M, Hermann A, Gu S, Alesutan I, Qadri SM, Borst O, et al. Chorein-sensitive polymerization of cortical actin and suicidal cell death in chorea-acanthocytosis. FASEB J. 2012;26:1526–34.

    PubMed  Google Scholar 

  95. Dobson-Stone C, Velayos-Baeza A, Filippone LA, Westbury S, Storch A, Erdmann T, et al. Chorein detection for the diagnosis of chorea-acanthocytosis. Ann Neurol. 2004;56:299–302.

    CAS  PubMed  Google Scholar 

  96. Jung HH, Danek A, Walker RH, Frey BM, Gassner C. McLeod neuroacanthocytosis syndrome. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2004:1993–2015.

    Google Scholar 

  97. Gantenbein AR, Damon-Perriere N, Bohlender JE, Chauveau M, Latxague C, Miranda M, et al. Feeding dystonia in McLeod syndrome. Mov Disord. 2011;26:2123–6.

    PubMed  Google Scholar 

  98. Danek A, Rubio JP, Rampoldi L, Ho M, Dobson-Stone C, Tison F, et al. McLeod neuroacanthocytosis: genotype and phenotype. Ann Neurol. 2001;50:755–64.

    CAS  PubMed  Google Scholar 

  99. Hewer E, Danek A, Schoser BG, Miranda M, Reichard R, Castiglioni C, et al. McLeod myopathy revisited: more neurogenic and less benign. Brain. 2007;130:3285–96.

    PubMed  Google Scholar 

  100. Klempir J, Roth J, Zarubova K, Pisacka M, Spackova N, Tilley L. The McLeod syndrome without acanthocytes. Parkinsonism Relat Disord. 2008;14:364–6.

    PubMed  Google Scholar 

  101. Allen Jr FH, Krabbe SM, Corcoran PA. A new phenotype (McLeod) in the Kell blood-group system. Vox Sang. 1961;6:555–60.

    PubMed  Google Scholar 

  102. Ho M, Chelly J, Carter N, Danek A, Crocker P, Monaco AP. Isolation of the gene for McLeod syndrome that encodes a novel membrane transport protein. Cell. 1994;77:869–80.

    CAS  PubMed  Google Scholar 

  103. Jung HH, Russo D, Redman C, Brandner S. Kell and XK immunohistochemistry in McLeod myopathy. Muscle Nerve. 2001;24:1346–51.

    CAS  PubMed  Google Scholar 

  104. Russo D, Wu X, Redman CM, Lee S. Expression of Kell blood group protein in nonerythroid tissues. Blood. 2000;96:340–6.

    CAS  PubMed  Google Scholar 

  105. Jung HH, Hergersberg M, Kneifel S, Alkadhi H, Schiess R, Weigell-Weber M, et al. McLeod syndrome: a novel mutation, predominant psychiatric manifestations, and distinct striatal imaging findings. Ann Neurol. 2001;49:384–92.

    CAS  PubMed  Google Scholar 

  106. Ueyama H, Kumamoto T, Nagao S, Masuda T, Sugihara R, Fujimoto S, et al. A novel mutation of the McLeod syndrome gene in a Japanese family. J Neurol Sci. 2000;176:151–4.

    CAS  PubMed  Google Scholar 

  107. Walker RH, Jung HH, Tison F, Lee S, Danek A. Phenotypic variation among brothers with the McLeod neuroacanthocytosis syndrome. Mov Disord. 2007;22:244–8.

    PubMed  Google Scholar 

  108. Jung HH, Hergersberg M, Vogt M, Pahnke J, Treyer V, Rothlisberger B, et al. McLeod phenotype associated with a XK missense mutation without hematologic, neuromuscular, or cerebral involvement. Transfusion. 2003;43:928–38.

    CAS  PubMed  Google Scholar 

  109. Walker RH, Danek A, Uttner I, Offner R, Reid M, Lee S. McLeod phenotype without the McLeod syndrome. Transfusion. 2007;47:299–305.

    CAS  PubMed  Google Scholar 

  110. Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. 2001;28:350–4.

    CAS  PubMed  Google Scholar 

  111. Mir P, Edwards MJ, Curtis AR, Bhatia KP, Quinn NP. Adult-onset generalized dystonia due to a mutation in the neuroferritinopathy gene. Mov Disord. 2005;20:243–5.

    PubMed  Google Scholar 

  112. Crompton DE, Chinnery PF, Bates D, Walls TJ, Jackson MJ, Curtis AJ, et al. Spectrum of movement disorders in neuroferritinopathy. Mov Disord. 2005;20:95–9.

    PubMed  Google Scholar 

  113. Kubota A, Hida A, Ichikawa Y, Momose Y, Goto J, Igeta Y, et al. A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype-phenotype correlations. Mov Disord. 2009;24:441–5.

    PubMed  Google Scholar 

  114. Xu X, Pin S, Gathinji M, Fuchs R, Harris ZL. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann N Y Acad Sci. 2004;1012:299–305.

    CAS  PubMed  Google Scholar 

  115. Miyajima H. Aceruloplasminemia, an iron metabolic disorder. Neuropathology. 2003;23:345–50.

    PubMed  Google Scholar 

  116. McNeill A, Pandolfo M, Kuhn J, Shang H, Miyajima H. The neurological presentation of ceruloplasmin gene mutations. Eur Neurol. 2008;60:200–5.

    PubMed  Google Scholar 

  117. Chen WJ, Lin Y, Xiong ZQ, Wei W, Ni W, Tan GH, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet. 2011;43:1252–5.

    CAS  PubMed  Google Scholar 

  118. Lee HY, Huang Y, Bruneau N, Roll P, Roberson ED, Hermann M, et al. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep. 2012;1:2–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Cloarec R, Bruneau N, Rudolf G, Massacrier A, Salmi M, Bataillard M, et al. PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine. Neurology. 2012;79:2097–103.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Gardiner AR, Bhatia KP, Stamelou M, Dale RC, Kurian MA, Schneider SA, et al. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology. 2012;79:2115–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Marini C, Conti V, Mei D, Battaglia D, Lettori D, Losito E, et al. PRRT2 mutations in familial infantile seizures, paroxysmal dyskinesia, and hemiplegic migraine. Neurology. 2012;79:2109–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. MacDonald ME, Barnes G, Srinidhi J, Duyao MP, Ambrose CM, Myers RH, et al. Gametic but not somatic instability of CAG repeat length in Huntington’s disease. J Med Genet. 1993;30:982–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Rainier S, Thomas D, Tokarz D, Ming L, Bui M, Plein E, et al. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol. 2004;61:1025–9.

    PubMed  Google Scholar 

  124. Shen Y, Lee HY, Rawson J, Ojha S, Babbitt P, Fu YH, et al. Mutations in PNKD causing paroxysmal dyskinesia alters protein cleavage and stability. Hum Mol Genet. 2011;20:2322–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Perez-Duenas B, Prior C, Ma Q, Fernandez-Alvarez E, Setoain X, Artuch R, et al. Childhood chorea with cerebral hypotrophy: a treatable GLUT1 energy failure syndrome. Arch Neurol. 2009;66:1410–4.

    PubMed  Google Scholar 

  126. Schneider SA, Paisan-Ruiz C, Garcia-Gorostiaga I, Quinn NP, Weber YG, Lerche H, et al. GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias. Mov Disord. 2009;24:1684–8.

    PubMed  Google Scholar 

  127. Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131:1831–44.

    PubMed Central  PubMed  Google Scholar 

  128. Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118:2157–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Marin-Valencia I, Good LB, Ma Q, Duarte J, Bottiglieri T, Sinton CM, et al. Glut1 deficiency (G1D): epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype. Neurobiol Dis. 2012;48:92–101.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Perlman SL. Spinocerebellar degenerations. Handb Clin Neurol. 2011;100:113–40.

    PubMed  Google Scholar 

  131. Kambouris M, Bohlega S, Al-Tahan A, Meyer BF. Localization of the gene for a novel autosomal recessive neurodegenerative Huntington-like disorder to 4p15.3. Am J Hum Genet. 2000;66:445–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Moore RC, Xiang F, Monaghan J, Han D, Zhang Z, Edstrom L, et al. Huntington disease phenocopy is a familial prion disease. Am J Hum Genet. 2001;69:1385–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Xiang F, Almqvist EW, Huq M, Lundin A, Hayden MR, Edstrom L, et al. A Huntington disease-like neurodegenerative disorder maps to chromosome 20p. Am J Hum Genet. 1998;63:1431–8.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell L. Margolis MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walker, R.H., Rudnicki, D.D., Margolis, R.L. (2015). Genetic Choreas. In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics