Skip to main content

Genetics of Dementia with Lewy Bodies

  • Chapter
Movement Disorder Genetics
  • 1137 Accesses

Abstract

Dementia with Lewy bodies (DLB) is one of the most underserved common diseases. From clinical to pathological aspects, DLB is often a difficult disease to diagnose. This and other factors that I will discuss in this chapter have added to the complexity in determining the full genetic landscape of DLB.

Over the last few years, advances in technology have allowed us to test the genome in an unprecedented manner. These novel technologies have been applied to many diseases with great success but are only now starting to be used in large enough cohorts of DLB cases. Here, I will discuss and review the most recent data arising from this field that are, slowly, starting to allow us to have a better picture of the genetic architecture of this disorder. Lastly, I discuss what the next few years should bring in terms of molecular studies in DLB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. George S et al. Alpha-synuclein: the long distance runner. Brain Pathol. 2013;23(3):350–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Spillantini MG et al. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA. 1998;95(11):6469–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Burn DJ. Cortical Lewy body disease. J Neurol Neurosurg Psychiatry. 2004;75(2):175–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kovari E, Horvath J, Bouras C. Neuropathology of Lewy body disorders. Brain Res Bull. 2009;80(4–5):203–10.

    Article  CAS  PubMed  Google Scholar 

  5. Vekrellis K et al. Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol. 2011;10(11):1015–25.

    Article  CAS  PubMed  Google Scholar 

  6. Singleton AB et al. Alpha-synuclein locus triplication causes Parkinson's disease. Science. 2003;302(5646):841.

    Article  CAS  PubMed  Google Scholar 

  7. Devine MJ et al. Parkinson’s disease and alpha-synuclein expression. Mov Disord. 2011;26(12):2160–8.

    Article  PubMed  Google Scholar 

  8. Mak SK et al. Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem. 2010;285(18):13621–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cuervo AM et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–5.

    Article  CAS  PubMed  Google Scholar 

  10. Chartier-Harlin MC et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 2004;364(9440):1167–9.

    Article  CAS  PubMed  Google Scholar 

  11. McKeith IG et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996;47(5):1113–24.

    Article  CAS  PubMed  Google Scholar 

  12. McKeith IG et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):1863–72.

    Article  CAS  PubMed  Google Scholar 

  13. Lippa CF et al. DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology. 2007;68(11):812–9.

    Article  CAS  PubMed  Google Scholar 

  14. Mrak RE, Griffin WS. Dementia with Lewy bodies: Definition, diagnosis, and pathogenic relationship to Alzheimer’s disease. Neuropsychiatr Dis Treat. 2007;3(5):619–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Hohl U et al. Diagnostic accuracy of dementia with Lewy bodies. Arch Neurol. 2000;57(3):347–51.

    Article  CAS  PubMed  Google Scholar 

  16. Wang CS et al. Twin pairs discordant for neuropathologically confirmed Lewy body dementia. J Neurol Neurosurg Psychiatry. 2009;80(5):562–5.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Duvoisin RC et al. Twin study of Parkinson disease. Neurology. 1981;31(1):77–80.

    Article  CAS  PubMed  Google Scholar 

  18. Pembrey ME. Discordant identical twins. II. Parkinsonism. Practitioner. 1972;209(250):240–3.

    CAS  PubMed  Google Scholar 

  19. Bogaerts V et al. A novel locus for dementia with Lewy bodies: a clinically and genetically heterogeneous disorder. Brain. 2007;130(Pt 9):2277–91.

    Article  PubMed  Google Scholar 

  20. Meeus B et al. Comprehensive genetic and mutation analysis of familial dementia with Lewy bodies linked to 2q35–q36. J Alzheimers Dis. 2010;20(1):197–205.

    CAS  PubMed  Google Scholar 

  21. Renton AE et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Meeus B, Theuns J, Van Broeckhoven C. The genetics of dementia with Lewy bodies: what are we missing? Arch Neurol. 2012;69(9):1113–8.

    PubMed  Google Scholar 

  23. Meeus B et al. DLB and PDD: a role for mutations in dementia and Parkinson disease genes? Neurobiol Aging. 2012;33(3):629 e5–18.

    Article  Google Scholar 

  24. Hardy J et al. Senile dementia of the Lewy body type has an apolipoprotein E epsilon 4 allele frequency intermediate between controls and Alzheimer’s disease. Neurosci Lett. 1994;182(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  25. Engelborghs S et al. Dose dependent effect of APOE epsilon4 on behavioral symptoms in frontal lobe dementia. Neurobiol Aging. 2006;27(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  26. Pickering-Brown SM et al. Apolipoprotein E4 and Alzheimer’s disease pathology in Lewy body disease and in other beta-amyloid-forming diseases. Lancet. 1994;343(8906):1155.

    Article  CAS  PubMed  Google Scholar 

  27. Singleton AB et al. Clinical and neuropathological correlates of apolipoprotein E genotype in dementia with Lewy bodies. Dement Geriatr Cogn Disord. 2002;14(4):167–75.

    Article  CAS  PubMed  Google Scholar 

  28. Tsuang D et al. APOE epsilon4 increases risk for dementia in pure synucleinopathies. JAMA Neurol. 2013;70(2):223–8.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sidransky E et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361(17):1651–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nalls MA et al. A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol. 2013;70(6):727–35.

    Article  PubMed  Google Scholar 

  31. Alcalay RN et al. Cognitive performance of GBA mutation carriers with early-onset PD: the CORE-PD study. Neurology. 2012;78(18):1434–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bras J, et al. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum Mol Genet. 2014;23(23):6139–46.

    Google Scholar 

  33. Balreira A et al. A nonsense mutation in the LIMP-2 gene associated with progressive myoclonic epilepsy and nephrotic syndrome. Hum Mol Genet. 2008;17(14):2238–43.

    Article  CAS  PubMed  Google Scholar 

  34. Berkovic SF et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet. 2008;82(3):673–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Dibbens LM et al. Mutation of SCARB2 in a patient with progressive myoclonus epilepsy and demyelinating peripheral neuropathy. Arch Neurol. 2011;68(6):812–3.

    PubMed  Google Scholar 

  36. Lambert JC et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nalls MA et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46:989–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Vilarino-Guell C et al. VPS35 mutations in Parkinson disease. Am J Hum Genet. 2011;89(1):162–7.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Zimprich A et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet. 2011;89(1):168–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zuk O et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci USA. 2014;111(4):E455–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hakola HP, Iivanainen M. A new hereditary disease with progressive dementia and polycystic osteodysplasia: neuroradiological analysis of seven cases. Neuroradiology. 1973;6(3):162–8.

    Article  CAS  PubMed  Google Scholar 

  42. Klunemann HH et al. The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology. 2005;64(9):1502–7.

    Article  CAS  PubMed  Google Scholar 

  43. Guerreiro R et al. TREM2 variants in Alzheimer’s disease. N Eng J Med. 2013;368(2):117–27.

    Article  CAS  Google Scholar 

  44. Jonsson T et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Eng J Med. 2013;368(2):107–16.

    Article  CAS  Google Scholar 

  45. Guerreiro R et al. Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Hum Mol Genet. 2014;23:R47–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Manolio TA et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Tomás Brás PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brás, J.M.T. (2015). Genetics of Dementia with Lewy Bodies. In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics