Skip to main content

Genetics of NBIA Disorders

  • Chapter
Movement Disorder Genetics

Abstract

Neurodegeneration with brain iron accumulation (NBIA) or pallidopyramidal disorders comprise several clinical and genetic entities. The presence of increased regional, nonphysiological aging-associated brain iron is often seen as their unifying characteristic even though its occurrence in the course of disease can be highly variable or absent. The clinical phenotype of this group consists of an early-onset movement disorder with a core combination of dystonia, parkinsonism, and pyramidal signs. Ataxia, axonal neuropathy, and cognitive decline can also occur but are less frequent. Iron accumulation or abnormal basal ganglia signal seen on MRI remains an important hallmark of this group of disorders when present. Neuropathologically, NBIA disorders usually cause widespread axonal spheroids in the CNS (and at times peripheral nerves) and accumulation of iron in the basal ganglia; they can further be subgrouped by the neuropathological presence of Lewy bodies, TDP-43 pathology, or tau pathology.

Even though recently there have been a number of advances in elucidating the pathophysiology of NBIA disorders, treatment usually remains symptomatic. Certain clinical presentations can point towards a specific genetic defect, and genetic tests usually make for the final confirmation of the disease. This review gives an overview about the genetic defects that lead to the different phenotypes of NBIA disorders, revealing overlap as well as important phenotypic presentations that can direct genetic testing. Where possible it provides information about (symptomatic) treatment options and their outcomes and finally discusses the upcoming challenges and future hopes in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gregory A, Hayflick SJ. Genetics of neurodegeneration with brain iron accumulation. Curr Neurol Neurosci Rep. 2011;11(3):254–61.

    CAS  PubMed  Google Scholar 

  2. Schneider SA, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation. Semin Pediatr Neurol. 2012;19(2):57–66.

    PubMed  Google Scholar 

  3. Aggarwal A, Schneider SA, Houlden H, Silverdale M, Paudel R, Paisan-Ruiz C, et al. Indian-subcontinent NBIA: unusual phenotypes, novel PANK2 mutations, and undetermined genetic forms. Mov Disord. 2010;25(10):1424–31.

    PubMed  Google Scholar 

  4. Hayflick SJ, Hartman M, Coryell J, Gitschier J, Rowley H. Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol. 2006;27(6):1230–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Paisan-Ruiz C, Bhatia KP, Li A, Hernandez D, Davis M, Wood NW, et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol. 2009;65(1):19–23.

    PubMed  Google Scholar 

  6. Yoshino H, Tomiyama H, Tachibana N, Ogaki K, Li Y, Funayama M, et al. Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology. 2010;75(15):1356–61.

    CAS  PubMed  Google Scholar 

  7. Kruer MC, Hiken M, Gregory A, Malandrini A, Clark D, Hogarth P, et al. Novel histopathologic findings in molecularly-confirmed pantothenate kinase-associated neurodegeneration. Brain. 2011;134(Pt 4):947–58.

    PubMed Central  PubMed  Google Scholar 

  8. McNeill A, Birchall D, Hayflick SJ, Gregory A, Schenk JF, Zimmerman EA, et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology. 2008;70(18):1614–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Stamelou M, Lai SC, Aggarwal A, Schneider SA, Houlden H, Yeh TH, et al. Dystonic opisthotonus: a “red flag” for neurodegeneration with brain iron accumulation syndromes? Mov Disord. 2013;28(10):1325–9.

    PubMed Central  PubMed  Google Scholar 

  10. Kruer MC, Boddaert N. Neurodegeneration with brain iron accumulation: a diagnostic algorithm. Semin Pediatr Neurol. 2012;19(2):67–74.

    PubMed Central  PubMed  Google Scholar 

  11. Defendini R, Markesbery WR, Mastri AR, Duffy PE. Hallervorden-Spatz disease and infantile neuroaxonal dystrophy. Ultrastructural observations, anatomical pathology and nosology. J Neurol Sci. 1973;20(1):7–23.

    CAS  PubMed  Google Scholar 

  12. Savoiardo M, Halliday WC, Nardocci N, Strada L, D’Incerti L, Angelini L, et al. Hallervorden-Spatz disease: MR and pathologic findings. AJNR Am J Neuroradiol. 1993;14(1):155–62.

    CAS  PubMed  Google Scholar 

  13. Wakabayashi K, Yoshimoto M, Fukushima T, Koide R, Horikawa Y, Morita T, et al. Widespread occurrence of alpha-synuclein/NACP-immunoreactive neuronal inclusions in juvenile and adult-onset Hallervorden-Spatz disease with Lewy bodies. Neuropathol Appl Neurobiol. 1999;25(5):363–8.

    CAS  PubMed  Google Scholar 

  14. Gregory A, Westaway SK, Holm IE, Kotzbauer PT, Hogarth P, Sonek S, et al. Neurodegeneration associated with genetic defects in phospholipase A(2). Neurology. 2008;71(18):1402–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Haraguchi T, Terada S, Ishizu H, Yokota O, Yoshida H, Takeda N, et al. Coexistence of TDP-43 and tau pathology in neurodegeneration with brain iron accumulation type 1 (NBIA-1, formerly Hallervorden-Spatz syndrome). Neuropathol Off J Jpn Soc Neuropathol. 2011;31(5):531–9.

    Google Scholar 

  16. Li A, Paudel R, Johnson R, Courtney R, Lees AJ, Holton JL, et al. Pantothenate kinase-associated neurodegeneration is not a synucleinopathy. Neuropathol Appl Neurobiol. 2012;39(2):121–131.

    Google Scholar 

  17. Eidelberg D, Sotrel A, Joachim C, Selkoe D, Forman A, Pendlebury WW, et al. Adult onset Hallervorden-Spatz disease with neurofibrillary pathology. A discrete clinicopathological entity. Brain. 1987;110(Pt 4):993–1013.

    PubMed  Google Scholar 

  18. Hartmann HA, White SK, Levine RL. Neuroaxonal dystrophy with neuromelanin deposition, neurofibrillary tangles, and neuronal loss. Light- and electron-microscopic changes in a 45-year-old woman with progressive psychomotor deterioration. Acta Neuropathol. 1983;61(3–4):169–72.

    CAS  PubMed  Google Scholar 

  19. Keogh MJ, Chinnery PF. Current concepts and controversies in neurodegeneration with brain iron accumulation. Semin Pediatr Neurol. 2012;19(2):51–6.

    PubMed  Google Scholar 

  20. Miyajima H, Nishimura Y, Mizoguchi K, Sakamoto M, Shimizu T, Honda N. Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology. 1987;37(5):761–7.

    CAS  PubMed  Google Scholar 

  21. McNeill A, Pandolfo M, Kuhn J, Shang H, Miyajima H. The neurological presentation of ceruloplasmin gene mutations. Eur Neurol. 2008;60(4):200–5.

    PubMed  Google Scholar 

  22. Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. 2001;28(4):350–4.

    CAS  PubMed  Google Scholar 

  23. Ohta E, Nagasaka T, Shindo K, Toma S, Nagasaka K, Ohta K, et al. Neuroferritinopathy in a Japanese family with a duplication in the ferritin light chain gene. Neurology. 2008;70(16 Pt 2):1493–4.

    CAS  PubMed  Google Scholar 

  24. Ory-Magne F, Brefel-Courbon C, Payoux P, Debruxelles S, Sibon I, Goizet C, et al. Clinical phenotype and neuroimaging findings in a French family with hereditary ferritinopathy (FTL498-499InsTC). Mov Disord. 2009;24(11):1676–83.

    PubMed  Google Scholar 

  25. Vidal R, Ghetti B, Takao M, Brefel-Courbon C, Uro-Coste E, Glazier BS, et al. Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol. 2004;63(4):363–80.

    CAS  PubMed  Google Scholar 

  26. Khateeb S, Flusser H, Ofir R, Shelef I, Narkis G, Vardi G, et al. PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet. 2006;79(5):942–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Haack TB, Hogarth P, Kruer MC, Gregory A, Wieland T, Schwarzmayr T, et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet. 2012;91(6):1144–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–91.

    CAS  PubMed  Google Scholar 

  29. Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KH, et al. Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med. 2003;348(1):33–40.

    CAS  PubMed  Google Scholar 

  30. Zeidman LA, Pandey DK. Declining use of the Hallervorden-Spatz disease eponym in the last two decades. J Child Neurol. 2012;27(10):1310–5.

    PubMed  Google Scholar 

  31. Hayflick SJ. Neurodegeneration with brain iron accumulation: from genes to pathogenesis. Semin Pediatr Neurol. 2006;13(3):182–5.

    PubMed  Google Scholar 

  32. Schneider SA, Aggarwal A, Bhatt M, Dupont E, Tisch S, Limousin P, et al. Severe tongue protrusion dystonia: clinical syndromes and possible treatment. Neurology. 2006;67(6):940–3.

    CAS  PubMed  Google Scholar 

  33. Marelli C, Piacentini S, Garavaglia B, Girotti F, Albanese A. Clinical and neuropsychological correlates in two brothers with pantothenate kinase-associated neurodegeneration. Mov Disord. 2005;20(2):208–12.

    PubMed  Google Scholar 

  34. Egan RA, Weleber RG, Hogarth P, Gregory A, Coryell J, Westaway SK, et al. Neuro-ophthalmologic and electroretinographic findings in pantothenate kinase-associated neurodegeneration (formerly Hallervorden-Spatz syndrome). Am J Ophthalmol. 2005;140(2):267–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Chang CL, Lin CM. Eye-of-the-tiger sign is not pathognomonic of pantothenate kinase-associated neurodegeneration in adult cases. Brain Behavior. 2011;1(1):55–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Strecker K, Hesse S, Wegner F, Sabri O, Schwarz J, Schneider JP. Eye of the tiger sign in multiple system atrophy. Eur J Neurol. 2007;14(11):e1–2.

    CAS  PubMed  Google Scholar 

  37. Delgado RF, Sanchez PR, Speckter H, Then EP, Jimenez R, Oviedo J, et al. Missense PANK2 mutation without “eye of the tiger” sign: MR findings in a large group of patients with pantothenate kinase-associated neurodegeneration (PKAN). J Magn Reson Imaging JMRI. 2012;35(4):788–94.

    Google Scholar 

  38. van den Bogaard SJ, Kruit MC, Dumas EM, Roos RA. Eye-of-the-tiger-sign in a 48 year healthy adult. J Neurol Sci. 2014;336(1–2):254–6.

    PubMed  Google Scholar 

  39. Hortnagel K, Prokisch H, Meitinger T. An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria. Hum Mol Genet. 2003;12(3):321–7.

    CAS  PubMed  Google Scholar 

  40. Kotzbauer PT, Truax AC, Trojanowski JQ, Lee VM. Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2. J Neurosci. 2005;25(3):689–98.

    CAS  PubMed  Google Scholar 

  41. Hartig MB, Hortnagel K, Garavaglia B, Zorzi G, Kmiec T, Klopstock T, et al. Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann Neurol. 2006;59(2):248–56.

    CAS  PubMed  Google Scholar 

  42. Gregory A, Polster BJ, Hayflick SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet. 2009;46(2):73–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Gregory A, Hayflick SJ. Pantothenate kinase-associated neurodegeneration. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, et al., editors. GeneReviews(R). Seattle, WA: University of Washington; 1993.

    Google Scholar 

  44. Hong BS, Senisterra G, Rabeh WM, Vedadi M, Leonardi R, Zhang YM, et al. Crystal structures of human pantothenate kinases. Insights into allosteric regulation and mutations linked to a neurodegeneration disorder. J Biol Chem. 2007;282(38):27984–93.

    CAS  PubMed  Google Scholar 

  45. Saito Y, Kawai M, Inoue K, Sasaki R, Arai H, Nanba E, et al. Widespread expression of alpha-synuclein and tau immunoreactivity in Hallervorden-Spatz syndrome with protracted clinical course. J Neurol Sci. 2000;177(1):48–59.

    CAS  PubMed  Google Scholar 

  46. Neumann M, Adler S, Schluter O, Kremmer E, Benecke R, Kretzschmar HA. Alpha-synuclein accumulation in a case of neurodegeneration with brain iron accumulation type 1 (NBIA-1, formerly Hallervorden-Spatz syndrome) with widespread cortical and brainstem-type Lewy bodies. Acta Neuropathol. 2000;100(5):568–74.

    CAS  PubMed  Google Scholar 

  47. Galvin JE, Giasson B, Hurtig HI, Lee VM, Trojanowski JQ. Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am J Pathol. 2000;157(2):361–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Houlden H, Lincoln S, Farrer M, Cleland PG, Hardy J, Orrell RW. Compound heterozygous PANK2 mutations confirm HARP and Hallervorden-Spatz syndromes are allelic. Neurology. 2003;61(10):1423–6.

    CAS  PubMed  Google Scholar 

  49. Zorzi G, Zibordi F, Chiapparini L, Bertini E, Russo L, Piga A, et al. Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: results of a phase II pilot trial. Mov Disord. 2011;26(9):1756–9.

    PubMed  Google Scholar 

  50. Cossu G, Abbruzzese G, Matta G, Murgia D, Melis M, Ricchi V, et al. Efficacy and safety of deferiprone for the treatment of pantothenate kinase-associated neurodegeneration (PKAN) and neurodegeneration with brain iron accumulation (NBIA): results from a four years follow-up. Parkinsonism Relat Disord. 2014;20(6):651–4.

    Google Scholar 

  51. Timmermann L, Pauls KA, Wieland K, Jech R, Kurlemann G, Sharma N, et al. Dystonia in neurodegeneration with brain iron accumulation: outcome of bilateral pallidal stimulation. Brain. 2010;133(Pt 3):701–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Mikati MA, Yehya A, Darwish H, Karam P, Comair Y. Deep brain stimulation as a mode of treatment of early onset pantothenate kinase-associated neurodegeneration. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2009;13(1):61–4.

    Google Scholar 

  53. Gregory A, Hayflick S. Neurodegeneration with brain iron accumulation disorders overview. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, et al., editors. GeneReviews(R). Seattle, WA: University of Washington; 1993.

    Google Scholar 

  54. Morgan NV, Westaway SK, Morton JE, Gregory A, Gissen P, Sonek S, et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet. 2006;38(7):752–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Kurian MA, Morgan NV, MacPherson L, Foster K, Peake D, Gupta R, et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology. 2008;70(18):1623–9.

    CAS  PubMed  Google Scholar 

  56. Aicardi J, Castelein P. Infantile neuroaxonal dystrophy. Brain. 1979;102(4):727–48.

    CAS  PubMed  Google Scholar 

  57. Nardocci N, Zorzi G, Farina L, Binelli S, Scaioli W, Ciano C, et al. Infantile neuroaxonal dystrophy: clinical spectrum and diagnostic criteria. Neurology. 1999;52(7):1472–8.

    CAS  PubMed  Google Scholar 

  58. Gregory A, Kurian MA, Maher ER, Hogarth P, Hayflick SJ. PLA2G6-associated neurodegeneration. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, et al., editors. GeneReviews(R). Seattle, WA: University of Washington; 1993.

    Google Scholar 

  59. Illingworth MA, Meyer E, Chong WK, Manzur AY, Carr LJ, Younis R, et al. PLA2G6-associated neurodegeneration (PLAN): further expansion of the clinical, radiological and mutation spectrum associated with infantile and atypical childhood-onset disease. Mol Genet Metab. 2014;114(2):183–9.

    Google Scholar 

  60. Kurian MA, McNeill A, Lin JP, Maher ER. Childhood disorders of neurodegeneration with brain iron accumulation (NBIA). Dev Med Child Neurol. 2011;53(5):394–404.

    PubMed  Google Scholar 

  61. Larsson PK, Claesson HE, Kennedy BP. Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J Biol Chem. 1998;273(1):207–14.

    CAS  PubMed  Google Scholar 

  62. Mubaidin A, Roberts E, Hampshire D, Dehyyat M, Shurbaji A, Mubaidien M, et al. Karak syndrome: a novel degenerative disorder of the basal ganglia and cerebellum. J Med Genet. 2003;40(7):543–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Balsinde J, Balboa MA. Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A2 in activated cells. Cell Signal. 2005;17(9):1052–62.

    CAS  PubMed  Google Scholar 

  64. Strokin M, Seburn KL, Cox GA, Martens KA, Reiser G. Severe disturbance in the Ca2+ signaling in astrocytes from mouse models of human infantile neuroaxonal dystrophy with mutated Pla2g6. Hum Mol Genet. 2012;21(12):2807–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Lands WE. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem. 1960;235:2233–7.

    CAS  PubMed  Google Scholar 

  66. Perez R, Melero R, Balboa MA, Balsinde J. Role of group VIA calcium-independent phospholipase A2 in arachidonic acid release, phospholipid fatty acid incorporation, and apoptosis in U937 cells responding to hydrogen peroxide. J Biol Chem. 2004;279(39):40385–91.

    CAS  PubMed  Google Scholar 

  67. Shinzawa K, Sumi H, Ikawa M, Matsuoka Y, Okabe M, Sakoda S, et al. Neuroaxonal dystrophy caused by group VIA phospholipase A2 deficiency in mice: a model of human neurodegenerative disease. J Neurosci. 2008;28(9):2212–20.

    CAS  PubMed  Google Scholar 

  68. Malik I, Turk J, Mancuso DJ, Montier L, Wohltmann M, Wozniak DF, et al. Disrupted membrane homeostasis and accumulation of ubiquitinated proteins in a mouse model of infantile neuroaxonal dystrophy caused by PLA2G6 mutations. Am J Pathol. 2008;172(2):406–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Paisan-Ruiz C, Li A, Schneider SA, Holton JL, Johnson R, Kidd D, et al. Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging. 2012;33(4):814–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Hartig MB, Iuso A, Haack T, Kmiec T, Jurkiewicz E, Heim K, et al. Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am J Hum Genet. 2011;89(4):543–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Hogarth P, Gregory A, Kruer MC, Sanford L, Wagoner W, Natowicz MR, et al. New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology. 2013;80(3):268–75.

    PubMed Central  PubMed  Google Scholar 

  72. Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. Journal of Movement Disorders, 2015;8(1):1–13. doi:10.14802/jmd.14034.

  73. Hayflick SJ, Kruer MC, Gregory A, Haack TB, Kurian MA, Houlden HH, et al. Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain. 2013;136(Pt 6):1708–17.

    PubMed Central  PubMed  Google Scholar 

  74. Kruer MC, Boddaert N, Schneider SA, Houlden H, Bhatia KP, Gregory A, et al. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol. 2012;33(3):407–14.

    CAS  PubMed  Google Scholar 

  75. Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet. 2013;45(4):445–9, 449e1.

    CAS  PubMed  Google Scholar 

  76. Lu Q, Yang P, Huang X, Hu W, Guo B, Wu F, et al. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell. 2011;21(2):343–57.

    CAS  PubMed  Google Scholar 

  77. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458–67.

    CAS  PubMed  Google Scholar 

  78. Dick KJ, Eckhardt M, Paisan-Ruiz C, Alshehhi AA, Proukakis C, Sibtain NA, et al. Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat. 2010;31(4):E1251–60.

    CAS  PubMed  Google Scholar 

  79. Edvardson S, Hama H, Shaag A, Gomori JM, Berger I, Soffer D, et al. Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am J Hum Genet. 2008;83(5):643–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Garone C, Pippucci T, Cordelli DM, Zuntini R, Castegnaro G, Marconi C, et al. FA2H-related disorders: a novel c.270 + 3A > T splice-site mutation leads to a complex neurodegenerative phenotype. Dev Med Child Neurol. 2011;53(10):958–61.

    PubMed  Google Scholar 

  81. Schneider SA, Bhatia KP. Three faces of the same gene: FA2H links neurodegeneration with brain iron accumulation, leukodystrophies, and hereditary spastic paraplegias. Ann Neurol. 2010;68(5):575–7.

    CAS  PubMed  Google Scholar 

  82. Kruer MC, Paisan-Ruiz C, Boddaert N, Yoon MY, Hama H, Gregory A, et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol. 2010;68(5):611–8.

    CAS  PubMed  Google Scholar 

  83. Stevanin G, Azzedine H, Denora P, Boukhris A, Tazir M, Lossos A, et al. Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain. 2008;131(Pt 3):772–84.

    PubMed  Google Scholar 

  84. Schule R, Schols L. Genetics of hereditary spastic paraplegias. Semin Neurol. 2011;31(5):484–93.

    PubMed  Google Scholar 

  85. Liao X, Luo Y, Zhan Z, Du J, Hu Z, Wang J, et al. SPG35 contributes to the second common subtype of AR-HSP in China: frequency analysis and functional characterization of FA2H gene mutations. Clin Genet. 2015;87(1):85–9.

    CAS  PubMed  Google Scholar 

  86. Pierson TM, Simeonov DR, Sincan M, Adams DA, Markello T, Golas G, et al. Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration. Eur J Hum Genet. 2012;20(4):476–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Kruer MC, Gregory A, Hayflick SJ. Fatty Acid hydroxylase-associated neurodegeneration. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, et al., editors. GeneReviews(R). Seattle, WA: University of Washington; 1993.

    Google Scholar 

  88. Potter KA, Kern MJ, Fullbright G, Bielawski J, Scherer SS, Yum SW, et al. Central nervous system dysfunction in a mouse model of FA2H deficiency. Glia. 2011;59(7):1009–21.

    PubMed Central  PubMed  Google Scholar 

  89. Najim al-Din AS, Wriekat A, Mubaidin A, Dasouki M, Hiari M. Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol Scand. 1994;89(5):347–52.

    CAS  PubMed  Google Scholar 

  90. Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G, et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology. 2007;68(19):1557–62.

    PubMed  Google Scholar 

  91. Williams DR, Hadeed A, Al-Din AS, Wreikat AL, Lees AJ. Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord. 2005;20(10):1264–71.

    PubMed  Google Scholar 

  92. Behrens MI, Bruggemann N, Chana P, Venegas P, Kagi M, Parrao T, et al. Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations. Mov Disord. 2010;25(12):1929–37.

    PubMed  Google Scholar 

  93. Machner B, Sprenger A, Behrens MI, Ramirez A, Bruggemann N, Klein C, et al. Eye movement disorders in ATP13A2 mutation carriers (PARK9). Mov Disord. 2010;25(15):2687–9.

    PubMed  Google Scholar 

  94. Schneider SA, Paisan-Ruiz C, Quinn NP, Lees AJ, Houlden H, Hardy J, et al. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord. 2010;25(8):979–84.

    PubMed  Google Scholar 

  95. Chien HF, Bonifati V, Barbosa ER. ATP13A2-related neurodegeneration (PARK9) without evidence of brain iron accumulation. Mov Disord. 2011;26(7):1364–5.

    PubMed  Google Scholar 

  96. Crosiers D, Ceulemans B, Meeus B, Nuytemans K, Pals P, Van Broeckhoven C, et al. Juvenile dystonia-parkinsonism and dementia caused by a novel ATP13A2 frameshift mutation. Parkinsonism Relat Disord. 2011;17(2):135–8.

    PubMed  Google Scholar 

  97. Santoro L, Breedveld GJ, Manganelli F, Iodice R, Pisciotta C, Nolano M, et al. Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics. 2011;12(1):33–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Park JS, Mehta P, Cooper AA, Veivers D, Heimbach A, Stiller B, et al. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum Mutat. 2011;32(8):956–64.

    CAS  PubMed  Google Scholar 

  99. Schultheis PJ, Hagen TT, O’Toole KK, Tachibana A, Burke CR, McGill DL, et al. Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem Biophys Res Commun. 2004;323(3):731–8.

    CAS  PubMed  Google Scholar 

  100. Ramonet D, Podhajska A, Stafa K, Sonnay S, Trancikova A, Tsika E, et al. PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity. Hum Mol Genet. 2012;21(8):1725–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Gusdon AM, Zhu J, Van Houten B, Chu CT. ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neurobiol Dis. 2012;45(3):962–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Grunewald A, Arns B, Seibler P, Rakovic A, Munchau A, Ramirez A, et al. ATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndrome. Neurobiol Aging. 2012;33(8):1843.e1–7.

    Google Scholar 

  103. Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Paisan-Ruiz C, Guevara R, Federoff M, Hanagasi H, Sina F, Elahi E, et al. Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations. Mov Disord. 2010;25(12):1791–800.

    PubMed  Google Scholar 

  105. Chinnery PF, Crompton DE, Birchall D, Jackson MJ, Coulthard A, Lombes A, et al. Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain. 2007;130(Pt 1):110–9.

    PubMed  Google Scholar 

  106. McNeill A, Chinnery PF. Neuroferritinopathy: update on clinical features and pathogenesis. Curr Drug Targets. 2012;13(9):1200–3.

    CAS  PubMed  Google Scholar 

  107. Keogh MJ, Jonas P, Coulthard A, Chinnery PF, Burn J. Neuroferritinopathy: a new inborn error of iron metabolism. Neurogenetics. 2012;13(1):93–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Hautot D, Pankhurst QA, Morris CM, Curtis A, Burn J, Dobson J. Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients. Biochim Biophys Acta. 2007;1772(1):21–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Mancuso M, Davidzon G, Kurlan RM, Tawil R, Bonilla E, Di Mauro S, et al. Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights. J Neuropathol Exp Neurol. 2005;64(4):280–94.

    CAS  PubMed  Google Scholar 

  110. Maciel P, Cruz VT, Constante M, Iniesta I, Costa MC, Gallati S, et al. Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement. Neurology. 2005;65(4):603–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Ogimoto M, Anzai K, Takenoshita H, Kogawa K, Akehi Y, Yoshida R, et al. Criteria for early identification of aceruloplasminemia. Intern Med. 2011;50(13):1415–8.

    PubMed  Google Scholar 

  112. Miyajima H, Takahashi Y, Kono S. Aceruloplasminemia, an inherited disorder of iron metabolism. Biometals. 2003;16(1):205–13.

    CAS  PubMed  Google Scholar 

  113. Kono S, Miyajima H. Molecular and pathological basis of aceruloplasminemia. Biol Res. 2006;39(1):15–23.

    CAS  PubMed  Google Scholar 

  114. Miyajima H. Aceruloplasminemia, an iron metabolic disorder. Neuropathol Off J Jpn Soc Neuropathol. 2003;23(4):345–50.

    Google Scholar 

  115. Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22:439–58.

    CAS  PubMed  Google Scholar 

  116. Gonzalez-Cuyar LF, Perry G, Miyajima H, Atwood CS, Riveros-Angel M, Lyons PF, et al. Redox active iron accumulation in aceruloplasminemia. Neuropathol Off J Jpn Soc Neuropathol. 2008;28(5):466–71.

    Google Scholar 

  117. Oide T, Yoshida K, Kaneko K, Ohta M, Arima K. Iron overload and antioxidative role of perivascular astrocytes in aceruloplasminemia. Neuropathol Appl Neurobiol. 2006;32(2):170–6.

    CAS  PubMed  Google Scholar 

  118. Yoshida K, Kaneko K, Miyajima H, Tokuda T, Nakamura A, Kato M, et al. Increased lipid peroxidation in the brains of aceruloplasminemia patients. J Neurol Sci. 2000;175(2):91–5.

    CAS  PubMed  Google Scholar 

  119. Dusi S, Valletta L, Haack TB, Tsuchiya Y, Venco P, Pasqualato S, et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet. 2014;94(1):11–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Burgetova A, Seidl Z, Krasensky J, Horakova D, Vaneckova M. Multiple sclerosis and the accumulation of iron in the Basal Ganglia: quantitative assessment of brain iron using MRI t(2) relaxometry. Eur Neurol. 2010;63(3):136–43.

    CAS  PubMed  Google Scholar 

  121. Al-Semari A, Bohlega S. Autosomal-recessive syndrome with alopecia, hypogonadism, progressive extra-pyramidal disorder, white matter disease, sensory neural deafness, diabetes mellitus, and low IGF1. Am J Med Genet A. 2007;143(2):149–60.

    Google Scholar 

  122. Alazami AM, Al-Saif A, Al-Semari A, Bohlega S, Zlitni S, Alzahrani F, et al. Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am J Hum Genet. 2008;83(6):684–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Muthane U, Chickabasaviah Y, Kaneski C, Shankar SK, Narayanappa G, Christopher R, et al. Clinical features of adult GM1 gangliosidosis: report of three Indian patients and review of 40 cases. Mov Disord. 2004;19(11):1334–41.

    PubMed  Google Scholar 

  124. Tanaka R, Momoi T, Yoshida A, Okumura M, Yamakura S, Takasaki Y, et al. Type 3 GM1 gangliosidosis: clinical and neuroradiological findings in an 11-year-old girl. J Neurol. 1995;242(5):299–303.

    CAS  PubMed  Google Scholar 

  125. Zoons E, de Koning TJ, Abeling NG, Tijssen MA. Neurodegeneration with brain iron accumulation on MRI: an adult case of alpha-mannosidosis. JIMD Rep. 2012;4:99–102.

    PubMed Central  PubMed  Google Scholar 

  126. Bartzokis G, Cummings J, Perlman S, Hance DB, Mintz J. Increased basal ganglia iron levels in Huntington disease. Arch Neurol. 1999;56(5):569–74.

    CAS  PubMed  Google Scholar 

  127. Santillo AF, Skoglund L, Lindau M, Eeg-Olofsson KE, Tovi M, Engler H, et al. Frontotemporal dementia-amyotrophic lateral sclerosis complex is simulated by neurodegeneration with brain iron accumulation. Alzheimer Dis Assoc Disord. 2009;23(3):298–300.

    PubMed  Google Scholar 

  128. Haba-Rubio J, Staner L, Petiau C, Erb G, Schunck T, Macher JP. Restless legs syndrome and low brain iron levels in patients with haemochromatosis. J Neurol Neurosurg Psychiatry. 2005;76(7):1009–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Gautschi M, Merlini L, Calza AM, Hayflick S, Nuoffer JM, Fluss J. Late diagnosis of fucosidosis in a child with progressive fixed dystonia, bilateral pallidal lesions and red spots on the skin. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2014;18(4):516–9.

    Google Scholar 

  130. Altarescu G, Sun M, Moore DF, Smith JA, Wiggs EA, Solomon BI, et al. The neurogenetics of mucolipidosis type IV. Neurology. 2002;59(3):306–13.

    CAS  PubMed  Google Scholar 

  131. Levy M, Turtzo C, Llinas RH. Superficial siderosis: a case report and review of the literature. Nat Clin Pract Neurol. 2007;3(1):54–8; quiz 9.

    PubMed  Google Scholar 

  132. Spengos K, Koutsis G, Tsivgoulis G, Panas M, Vemmos K, Vassilopoulos D. Superficial siderosis of the CNS. Case report and literature review. Nervenarzt. 2004;75(5):492–5.

    CAS  PubMed  Google Scholar 

  133. Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Ann Neurol. 1999;46(1):123–5.

    CAS  PubMed  Google Scholar 

  134. Visanji NP, Collingwood JF, Finnegan ME, Tandon A, House E, Hazrati LN. Iron deficiency in parkinsonism: region-specific iron dysregulation in Parkinson’s disease and multiple system atrophy. J Parkinsons Dis. 2013;3(4):523–37.

    CAS  PubMed  Google Scholar 

  135. Berg D, Hochstrasser H. Iron metabolism in Parkinsonian syndromes. Mov Disord. 2006;21(9):1299–310.

    PubMed  Google Scholar 

  136. Wang Y, Butros SR, Shuai X, Dai Y, Chen C, Liu M, et al. Different iron-deposition patterns of multiple system atrophy with predominant parkinsonism and idiopathetic Parkinson diseases demonstrated by phase-corrected susceptibility-weighted imaging. AJNR Am J Neuroradiol. 2012;33(2):266–73.

    CAS  PubMed  Google Scholar 

  137. Davie CA, Barker GJ, Machado C, Miller DH, Lees AJ. Proton magnetic resonance spectroscopy in Steele-Richardson-Olszewski syndrome. Mov Disord. 1997;12(5):767–71.

    CAS  PubMed  Google Scholar 

  138. Molinuevo JL, Munoz E, Valldeoriola F, Tolosa E. The eye of the tiger sign in cortical-basal ganglionic degeneration. Mov Disord. 1999;14(1):169–71.

    CAS  PubMed  Google Scholar 

  139. Dusek P, Jankovic J, Le W. Iron dysregulation in movement disorders. Neurobiol Dis. 2012;46(1):1–18.

    CAS  PubMed  Google Scholar 

  140. Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer. 2004;4(8):604–16.

    CAS  PubMed  Google Scholar 

  141. Bras J, Singleton A, Cookson MR, Hardy J. Emerging pathways in genetic Parkinson’s disease: Potential role of ceramide metabolism in Lewy body disease. FEBS J. 2008;275(23):5767–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8(5):409–12.

    CAS  PubMed  Google Scholar 

  143. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7(10):1836–46.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Houlden MD, MRCP, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wiethoff, S., Bhatia, K.P., Houlden, H. (2015). Genetics of NBIA Disorders. In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics