Skip to main content

Genetics of Recessive Ataxias

  • Chapter
Movement Disorder Genetics

Abstract

Autosomal recessive cerebellar ataxias (ARCA) comprise a heterogeneous group of rare and most often complex hereditary neurodegenerative diseases. In the last few years, an acceleration of new ARCA gene discovery, including microarrays and next-generation sequencing, has occurred. These techniques have also led to the description of mutations in known genes associated with unusual phenotypes and the demonstration that there is a continuum between ARCA and other neurodegenerative disorders. An ARCA should be considered in patients (1) with an age at onset before 30 years, (2) with other affected siblings, and (3) if consanguinity in the family is known. According to pathophysiological principles, the ARCA might be associated with further neurological, especially neuropathy, and extra-neurological symptoms. Thus, results of electromyography are of interest for the classification of ARCA as well as for the etiological investigation. Similarly, another key point is whether there is clear cerebellar atrophy on brain MRI or not. However, both electromyography and MRI may be normal at the onset of the disease and should be repeated later in such cases. Several common pathophysiological pathways for ARCA have been described so far, including mitochondrial dysfunction, DNA repair deficiency, abnormal protein folding, and degradation, paroxysmal disorders. The following chapter classifies ARCA according to an absence or involvement of the peripheral nervous system in: (1) ARCA with pure sensory neuropathy, (2) ARCA with motor and sensory polyneuropathy, and (3) ARCA without polyneuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol. 2007;6:245–57.

    CAS  PubMed  Google Scholar 

  2. Date H, Onodera O, Tanaka H, et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet. 2001;29:184–8.

    CAS  PubMed  Google Scholar 

  3. Moreira MC, Klur S, Watanabe M, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet. 2004;36:225–7.

    CAS  PubMed  Google Scholar 

  4. Engert JC, Berube P, Mercier J, et al. ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet. 2000;24:120–5.

    CAS  PubMed  Google Scholar 

  5. Gros-Louis F, Dupre N, Dion P, et al. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet. 2007;39:80–5.

    CAS  PubMed  Google Scholar 

  6. Lagier-Tourenne C, Tazir M, Lopez LC, et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet. 2008;82:661–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Vermeer S, Hoischen A, Meijer RP, et al. Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am J Hum Genet. 2010;87:813–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Fiskerstrand T, H’Mida-Ben Brahim D, Johansson S, et al. Mutations in ABHD12 cause the neurodegenerative disease PHARC: an inborn error of endocannabinoid metabolism. Am J Hum Genet. 2010;87:410–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Assoum M, Salih MA, Drouot N, Hnia K, Martelli A, Koenig M. The Salih ataxia mutation impairs Rubicon endosomal localization. Cerebellum. 2013;12:835–40.

    CAS  PubMed  Google Scholar 

  10. Shi Y, Wang J, Li JD, et al. Identification of CHIP as a novel causative gene for autosomal recessive cerebellar ataxia. PLoS One. 2013;8:e81884.

    PubMed Central  PubMed  Google Scholar 

  11. Synofzik M, Gonzalez MA, Lourenco CM, et al. PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain. 2014;137:69–77.

    PubMed Central  PubMed  Google Scholar 

  12. Anheim M, Fleury M, Monga B, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics. 2010;11:1–12.

    CAS  PubMed  Google Scholar 

  13. Schulz JB, Boesch S, Burk K, et al. Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol. 2009;5:222–34.

    PubMed  Google Scholar 

  14. Cossee M, Schmitt M, Campuzano V, et al. Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: founder effect and permutations. Proc Natl Acad Sci U S A. 1997;94:7452–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Campuzano V, Montermini L, Molto MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:1423–7.

    CAS  PubMed  Google Scholar 

  16. Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal. 2010;13:651–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Delatycki MB, Paris DB, Gardner RJ, et al. Clinical and genetic study of Friedreich ataxia in an Australian population. Am J Med Genet. 1999;87:168–74.

    CAS  PubMed  Google Scholar 

  18. Durr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335:1169–75.

    CAS  PubMed  Google Scholar 

  19. Metz G, Coppard N, Cooper JM, et al. Rating disease progression of Friedreich’s ataxia by the International Cooperative Ataxia Rating Scale: analysis of a 603-patient database. Brain. 2013;136:259–68.

    PubMed Central  PubMed  Google Scholar 

  20. Chan YC. Aripiprazole treatment for psychosis associated with Friedreich’s ataxia. Gen Hosp Psychiatry. 2005;27:372.

    PubMed  Google Scholar 

  21. White M, Lalonde R, Botez-Marquard T. Neuropsychologic and neuropsychiatric characteristics of patients with Friedreich’s ataxia. Acta Neurol Scand. 2000;102:222–6.

    CAS  PubMed  Google Scholar 

  22. Weidemann F, Rummey C, Bijnens B, et al. The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation. 2012;125:1626–34.

    PubMed  Google Scholar 

  23. Mascalchi M, Salvi F, Piacentini S, Bartolozzi C. Friedreich’s ataxia: MR findings involving the cervical portion of the spinal cord. AJR Am J Roentgenol. 1994;163:187–91.

    CAS  PubMed  Google Scholar 

  24. Coppola G, De Michele G, Cavalcanti F, et al. Why do some Friedreich’s ataxia patients retain tendon reflexes? A clinical, neurophysiological and molecular study. J Neurol. 1999;246:353–7.

    CAS  PubMed  Google Scholar 

  25. Armani M, Zortea M, Pastorello E, et al. Friedreich’s ataxia: clinical heterogeneity in two sisters. Neurol Sci. 2006;27:140–2.

    CAS  PubMed  Google Scholar 

  26. Bhidayasiri R, Perlman SL, Pulst SM, Geschwind DH. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol. 2005;62:1865–9.

    PubMed  Google Scholar 

  27. Patel PI, Dimachkie MM. Atypical friedreich ataxia with a very late onset and an unusual limited GAA repeat. Arch Neurol. 2000;57:1380–2.

    PubMed  Google Scholar 

  28. Bidichandani SI, Garcia CA, Patel PI, Dimachkie MM. Very late-onset Friedreich ataxia despite large GAA triplet repeat expansions. Arch Neurol. 2000;57:246–51.

    CAS  PubMed  Google Scholar 

  29. de Bot ST, Willemsen MA, Vermeer S, Kremer HP, van de Warrenburg BP. Reviewing the genetic causes of spastic-ataxias. Neurology. 2012;79:1507–14.

    PubMed  Google Scholar 

  30. Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol. 2010;67:941–7.

    PubMed  Google Scholar 

  31. Di Prospero NA, Baker A, Jeffries N, Fischbeck KH. Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 2007;6:878–86.

    PubMed  Google Scholar 

  32. Di Prospero NA, Sumner CJ, Penzak SR, Ravina B, Fischbeck KH, Taylor JP. Safety, tolerability, and pharmacokinetics of high-dose idebenone in patients with Friedreich ataxia. Arch Neurol. 2007;64:803–8.

    PubMed  Google Scholar 

  33. Hausse AO, Aggoun Y, Bonnet D, et al. Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart. 2002;87:346–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Ribai P, Pousset F, Tanguy ML, et al. Neurological, cardiological, and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch Neurol. 2007;64:558–64.

    PubMed  Google Scholar 

  35. Mariotti C, Fancellu R, Caldarazzo S, et al. Erythropoietin in Friedreich ataxia: no effect on frataxin in a randomized controlled trial. Mov Disord. 2012;27:446–9.

    CAS  PubMed  Google Scholar 

  36. Mariotti C, Nachbauer W, Panzeri M, Poewe W, Taroni F, Boesch S. Erythropoietin in Friedreich ataxia. J Neurochem. 2013;126 Suppl 1:80–7.

    CAS  PubMed  Google Scholar 

  37. Palau F, Espinos C. Autosomal recessive cerebellar ataxias. Orphanet J Rare Dis. 2006;1:47.

    PubMed Central  PubMed  Google Scholar 

  38. Ouahchi K, Arita M, Kayden H, et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet. 1995;9:141–5.

    CAS  PubMed  Google Scholar 

  39. Cavalier L, Ouahchi K, Kayden HJ, et al. Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet. 1998;62:301–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Narcisi TM, Shoulders CC, Chester SA, et al. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia. Am J Hum Genet. 1995;57:1298–310.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Collins JC, Scheinberg IH, Giblin DR, Sternlieb I. Hepatic peroxisomal abnormalities in abetalipoproteinemia. Gastroenterology. 1989;97:766–70.

    CAS  PubMed  Google Scholar 

  42. Kohlschutter A. Abetalipoproteinemia. In: Klockgether T, editor. Handbook of ataxia disorders. New York: Marcel Dekker; 2000. p. 205–21.

    Google Scholar 

  43. Zamel R, Khan R, Pollex RL, Hegele RA. Abetalipoproteinemia: two case reports and literature review. Orphanet J Rare Dis. 2008;3:19.

    PubMed Central  PubMed  Google Scholar 

  44. Muller DP, Lloyd JK, Wolff OH. The role of vitamin E in the treatment of the neurological features of abetalipoproteinaemia and other disorders of fat absorption. J Inherit Metab Dis. 1985;8 Suppl 1:88–92.

    PubMed  Google Scholar 

  45. Koskinen T, Sainio K, Rapola J, Pihko H, Paetau A. Sensory neuropathy in infantile onset spinocerebellar ataxia (IOSCA). Muscle Nerve. 1994;17:509–15.

    CAS  PubMed  Google Scholar 

  46. Dundar H, Ozgul RK, Yalnizoglu D, et al. Identification of a novel Twinkle mutation in a family with infantile onset spinocerebellar ataxia by whole exome sequencing. Pediatr Neurol. 2012;46:172–7.

    PubMed  Google Scholar 

  47. Park MH, Woo HM, Hong YB, et al. Recessive C10orf2 mutations in a family with infantile-onset spinocerebellar ataxia, sensorimotor polyneuropathy, and myopathy. Neurogenetics. 2014;15:171–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Hartley JN, Booth FA, Del Bigio MR, Mhanni AA. Novel Autosomal Recessive c10orf2 Mutations Causing Infantile-Onset Spinocerebellar Ataxia. Case Rep Pediatr. 2012;2012:303096.

    PubMed Central  PubMed  Google Scholar 

  49. Hakonen AH, Isohanni P, Paetau A, Herva R, Suomalainen A, Lonnqvist T. Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion. Brain. 2007;130:3032–40.

    PubMed  Google Scholar 

  50. Hudson G, Deschauer M, Busse K, Zierz S, Chinnery PF. Sensory ataxic neuropathy due to a novel C10Orf2 mutation with probable germline mosaicism. Neurology. 2005;64:371–3.

    CAS  PubMed  Google Scholar 

  51. Van Hove JL, Cunningham V, Rice C, et al. Finding twinkle in the eyes of a 71-year-old lady: a case report and review of the genotypic and phenotypic spectrum of TWINKLE-related dominant disease. Am J Med Genet A. 2009;149A:861–7.

    PubMed  Google Scholar 

  52. Fratter C, Gorman GS, Stewart JD, et al. The clinical, histochemical, and molecular spectrum of PEO1 (Twinkle)-linked adPEO. Neurology. 2010;74:1619–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Tchikviladze M, Gilleron M, Maisonobe T, et al. A diagnostic flow chart for POLG-related diseases based on signs sensitivity and specificity. J Neurol Neurosurg Psychiatry. 2014 (Epub ahead of print).

    Google Scholar 

  54. Menezes MP, Ouvrier RA. Peripheral neuropathy associated with mitochondrial disease in children. Dev Med Child Neurol. 2012;54:407–14.

    PubMed  Google Scholar 

  55. Mancuso M, Filosto M, Bellan M, et al. POLG mutations causing ophthalmoplegia, sensorimotor polyneuropathy, ataxia, and deafness. Neurology. 2004;62:316–8.

    CAS  PubMed  Google Scholar 

  56. Winterthun S, Ferrari G, He L, et al. Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology. 2005;64:1204–8.

    CAS  PubMed  Google Scholar 

  57. Milone M, Benarroch EE, Wong LJ. POLG-related disorders: defects of the nuclear and mitochondrial genome interaction. Neurology. 2011;77:1847–52.

    PubMed  Google Scholar 

  58. Tzoulis C, Engelsen BA, Telstad W, et al. The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain. 2006;129:1685–92.

    PubMed  Google Scholar 

  59. Verhagen MM, Abdo WF, Willemsen MA, et al. Clinical spectrum of ataxia-telangiectasia in adulthood. Neurology. 2009;73:430–7.

    CAS  PubMed  Google Scholar 

  60. Woods CG, Taylor AM. Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals. Q J Med. 1992;82:169–79.

    CAS  PubMed  Google Scholar 

  61. Zannolli R, Buoni S, Betti G, et al. A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord. 2012;27:1312–6.

    CAS  PubMed  Google Scholar 

  62. Buoni S, Zannolli R, Sorrentino L, Fois A. Betamethasone and improvement of neurological symptoms in ataxia-telangiectasia. Arch Neurol. 2006;63:1479–82.

    PubMed  Google Scholar 

  63. Broccoletti T, Del Giudice E, Amorosi S, et al. Steroid-induced improvement of neurological signs in ataxia-telangiectasia patients. Eur J Neurol. 2008;15:223–8.

    CAS  PubMed  Google Scholar 

  64. Broccoletti T, Del Giudice E, Cirillo E, et al. Efficacy of very-low-dose betamethasone on neurological symptoms in ataxia-telangiectasia. Eur J Neurol. 2011;18:564–70.

    CAS  PubMed  Google Scholar 

  65. Chessa L, Leuzzi V, Plebani A, et al. Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia telangiectasia patients: results of a phase 2 trial. Orphanet J Rare Dis. 2014;9:5.

    PubMed Central  PubMed  Google Scholar 

  66. Delia D, Piane M, Buscemi G, et al. MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxia-telangiectasia-like disorder. Hum Mol Genet. 2004;13:2155–63.

    CAS  PubMed  Google Scholar 

  67. Stewart GS, Maser RS, Stankovic T, et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell. 1999;99:577–87.

    CAS  PubMed  Google Scholar 

  68. Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst). 2004;3:1219–25.

    CAS  Google Scholar 

  69. Uchisaka N, Takahashi N, Sato M, et al. Two brothers with ataxia-telangiectasia-like disorder with lung adenocarcinoma. J Pediatr. 2009;155:435–8.

    PubMed  Google Scholar 

  70. Fernet M, Gribaa M, Salih MA, Seidahmed MZ, Hall J, Koenig M. Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Hum Mol Genet. 2005;14:307–18.

    CAS  PubMed  Google Scholar 

  71. Oba D, Hayashi M, Minamitani M, et al. Autopsy study of cerebellar degeneration in siblings with ataxia-telangiectasia-like disorder. Acta Neuropathol. 2010;119:513–20.

    PubMed  Google Scholar 

  72. Le Ber I, Moreira MC, Rivaud-Pechoux S, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain. 2003;126:2761–72.

    PubMed  Google Scholar 

  73. Criscuolo C, Mancini P, Menchise V, et al. Very late onset in ataxia oculomotor apraxia type I. Ann Neurol. 2005;57:777.

    CAS  PubMed  Google Scholar 

  74. Criscuolo C, Mancini P, Sacca F, et al. Ataxia with oculomotor apraxia type 1 in Southern Italy: late onset and variable phenotype. Neurology. 2004;63:2173–5.

    CAS  PubMed  Google Scholar 

  75. Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366:636–46.

    CAS  PubMed  Google Scholar 

  76. Castellotti B, Mariotti C, Rimoldi M, et al. Ataxia with oculomotor apraxia type1 (AOA1): novel and recurrent aprataxin mutations, coenzyme Q10 analyses, and clinical findings in Italian patients. Neurogenetics. 2011;12:193–201.

    CAS  PubMed  Google Scholar 

  77. Le Ber I, Dubourg O, Benoist JF, et al. Muscle coenzyme Q10 deficiencies in ataxia with oculomotor apraxia 1. Neurology. 2007;68:295–7.

    PubMed  Google Scholar 

  78. Quinzii CM, Lopez LC, Naini A, DiMauro S, Hirano M. Human CoQ10 deficiencies. Biofactors. 2008;32:113–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Moreira MC, Barbot C, Tachi N, et al. Homozygosity mapping of Portuguese and Japanese forms of ataxia-oculomotor apraxia to 9p13, and evidence for genetic heterogeneity. Am J Hum Genet. 2001;68:501–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Tumbale P, Williams JS, Schellenberg MJ, Kunkel TA, Williams RS. Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity. Nature. 2014;506:111–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Moreira MC, Barbot C, Tachi N, et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet. 2001;29:189–93.

    CAS  PubMed  Google Scholar 

  82. Anheim M, Monga B, Fleury M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132:2688–98.

    CAS  PubMed  Google Scholar 

  83. Anheim M, Fleury MC, Franques J, et al. Clinical and molecular findings of ataxia with oculomotor apraxia type 2 in 4 families. Arch Neurol. 2008;65:958–62.

    PubMed  Google Scholar 

  84. Le Ber I, Bouslam N, Rivaud-Pechoux S, et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain. 2004;127:759–67.

    PubMed  Google Scholar 

  85. Duquette A, Roddier K, McNabb-Baltar J, et al. Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy. Ann Neurol. 2005;57:408–14.

    CAS  PubMed  Google Scholar 

  86. Chen YZ, Hashemi SH, Anderson SK, et al. Senataxin, the yeast Sen1p orthologue: characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiol Dis. 2006;23:97–108.

    CAS  PubMed  Google Scholar 

  87. Chen YZ, Bennett CL, Huynh HM, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet. 2004;74:1128–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. El-Khamisy SF, Saifi GM, Weinfeld M, et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature. 2005;434:108–13.

    CAS  PubMed  Google Scholar 

  89. Takashima H, Boerkoel CF, John J, et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet. 2002;32:267–72.

    CAS  PubMed  Google Scholar 

  90. Monin ML, Mignot C, De Lonlay P, et al. 29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype. Orphanet J Rare Dis. 2014;9:207.

    PubMed Central  PubMed  Google Scholar 

  91. Duquette A, Brais B, Bouchard JP, Mathieu J. Clinical presentation and early evolution of spastic ataxia of Charlevoix-Saguenay. Mov Disord. 2013;28:2011–4.

    PubMed  Google Scholar 

  92. Synofzik M, Soehn AS, Gburek-Augustat J, et al. Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS): expanding the genetic, clinical and imaging spectrum. Orphanet J Rare Dis. 2013;8:41.

    PubMed Central  PubMed  Google Scholar 

  93. Baets J, Deconinck T, Smets K, et al. Mutations in SACS cause atypical and late-onset forms of ARSACS. Neurology. 2010;75:1181–8.

    CAS  PubMed  Google Scholar 

  94. Vermeer S, Meijer RP, Pijl BJ, et al. ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics. 2008;9:207–14.

    PubMed Central  PubMed  Google Scholar 

  95. Yu-Wai-Man P, Pyle A, Griffin H, Santibanez-Korev M, Horvath R, Chinnery PF. Abnormal retinal thickening is a common feature among patients with ARSACS-related phenotypes. Br J Ophthalmol. 2014;98:711–3.

    PubMed Central  PubMed  Google Scholar 

  96. Gerwig M, Kruger S, Kreuz FR, Kreis S, Gizewski ER, Timmann D. Characteristic MRI and funduscopic findings help diagnose ARSACS outside Quebec. Neurology. 2010;75:2133.

    CAS  PubMed  Google Scholar 

  97. Gregianin E, Vazza G, Scaramel E, et al. A novel SACS mutation results in non-ataxic spastic paraplegia and peripheral neuropathy. Eur J Neurol. 2013;20:1486–91.

    CAS  PubMed  Google Scholar 

  98. Shimazaki H, Takiyama Y, Sakoe K, Ando Y, Nakano I. A phenotype without spasticity in sacsin-related ataxia. Neurology. 2005;64:2129–31.

    CAS  PubMed  Google Scholar 

  99. Parfitt DA, Michael GJ, Vermeulen EG, et al. The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1. Hum Mol Genet. 2009;18:1556–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Horn MA, van den Brink DM, Wanders RJ, et al. Phenotype of adult Refsum disease due to a defect in peroxin 7. Neurology. 2007;68:698–700.

    CAS  PubMed  Google Scholar 

  101. Jansen GA, Ofman R, Ferdinandusse S, et al. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat Genet. 1997;17:190–3.

    CAS  PubMed  Google Scholar 

  102. Harari D, Gibberd FB, Dick JP, Sidey MC. Plasma exchange in the treatment of Refsum’s disease (heredopathia atactica polyneuritiformis). J Neurol Neurosurg Psychiatry. 1991;54:614–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Dickson N, Mortimer JG, Faed JM, Pollard AC, Styles M, Peart DA. A child with Refsum’s disease: successful treatment with diet and plasma exchange. Dev Med Child Neurol. 1989;31:92–7.

    CAS  PubMed  Google Scholar 

  104. Pilo-de-la-Fuente B, Jimenez-Escrig A, Lorenzo JR, et al. Cerebrotendinous xanthomatosis in Spain: clinical, prognostic, and genetic survey. Eur J Neurol. 2011;18:1203–11.

    CAS  PubMed  Google Scholar 

  105. Nie S, Chen G, Cao X, Zhang Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2014;9:179.

    PubMed Central  PubMed  Google Scholar 

  106. Guerrera S, Stromillo ML, Mignarri A, et al. Clinical relevance of brain volume changes in patients with cerebrotendinous xanthomatosis. J Neurol Neurosurg Psychiatry. 2010;81:1189–93.

    CAS  PubMed  Google Scholar 

  107. Verrips A, Wevers RA, Van Engelen BG, et al. Effect of simvastatin in addition to chenodeoxycholic acid in patients with cerebrotendinous xanthomatosis. Metabolism. 1999;48:233–8.

    CAS  PubMed  Google Scholar 

  108. Moghadasian MH, Salen G, Frohlich JJ, Scudamore CH. Cerebrotendinous xanthomatosis: a rare disease with diverse manifestations. Arch Neurol. 2002;59:527–9.

    PubMed  Google Scholar 

  109. Fiskerstrand T, Knappskog P, Majewski J, Wanders RJ, Boman H, Bindoff LA. A novel Refsum-like disorder that maps to chromosome 20. Neurology. 2009;72:20–7.

    CAS  PubMed  Google Scholar 

  110. Nishiguchi KM, Avila-Fernandez A, van Huet RA, et al. Exome sequencing extends the phenotypic spectrum for ABHD12 mutations: from syndromic to nonsyndromic retinal degeneration. Ophthalmology. 2014;121:1620–7.

    PubMed  Google Scholar 

  111. Chen DH, Naydenov A, Blankman JL, et al. Two novel mutations in ABHD12: expansion of the mutation spectrum in PHARC and assessment of their functional effects. Hum Mutat. 2013;34:1672–8.

    PubMed Central  PubMed  Google Scholar 

  112. Eisenberger T, Slim R, Mansour A, et al. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3. Orphanet J Rare Dis. 2012;7:59.

    PubMed Central  PubMed  Google Scholar 

  113. Synofzik M, Kernstock C, Haack TB, Schols L. Ataxia meets chorioretinal dystrophy and hypogonadism: Boucher-Neuhauser syndrome due to PNPLA6 mutations. J Neurol Neurosurg Psychiatry. 2014 (Epub ahead of print).

    Google Scholar 

  114. Rainier S, Bui M, Mark E, et al. Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet. 2008;82:780–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Dupre N, Gros-Louis F, Chrestian N, et al. Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol. 2007;62:93–8.

    CAS  PubMed  Google Scholar 

  116. Noreau A, Bourassa CV, Szuto A, et al. SYNE1 mutations in autosomal recessive cerebellar ataxia. JAMA Neurol. 2013;70:1296–331.

    PubMed  Google Scholar 

  117. Izumi Y, Miyamoto R, Morino H, et al. Cerebellar ataxia with SYNE1 mutation accompanying motor neuron disease. Neurology. 2013;80:600–1.

    PubMed  Google Scholar 

  118. Zhang Q, Bethmann C, Worth NF, et al. Nesprin-1 and −2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet. 2007;16:2816–33.

    CAS  PubMed  Google Scholar 

  119. Mignot C, Apartis E, Durr A, et al. Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression. Orphanet J Rare Dis. 2013;8:173.

    PubMed Central  PubMed  Google Scholar 

  120. Mollet J, Delahodde A, Serre V, et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet. 2008;82:623–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Balreira A, Boczonadi V, Barca E, et al. ANO10 mutations cause ataxia and coenzyme Q(1)(0) deficiency. J Neurol. 2014;261:2192–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Renaud M, Anheim M, Kamsteeg EJ, et al. Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype-phenotype correlation study. JAMA Neurol. 2014;71:1305–10.

    PubMed  Google Scholar 

  123. Shi CH, Schisler JC, Rubel CE, et al. Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP. Hum Mol Genet. 2014;23:1013–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Synofzik M, Schule R, Schulze M, et al. Phenotype and frequency of STUB1 mutations: next-generation screenings in Caucasian ataxia and spastic paraplegia cohorts. Orphanet J Rare Dis. 2014;9:57.

    PubMed Central  PubMed  Google Scholar 

  125. Heimdal K, Sanchez-Guixe M, Aukrust I, et al. STUB1 mutations in autosomal recessive ataxias - evidence for mutation-specific clinical heterogeneity. Orphanet J Rare Dis. 2014;9:146.

    PubMed Central  PubMed  Google Scholar 

  126. Depondt C, Donatello S, Simonis N, et al. Autosomal recessive cerebellar ataxia of adult onset due to STUB1 mutations. Neurology. 2014;82:1749–50.

    PubMed  Google Scholar 

  127. Assoum M, Salih MA, Drouot N, et al. Rundataxin, a novel protein with RUN and diacylglycerol binding domains, is mutant in a new recessive ataxia. Brain. 2010;133:2439–47.

    PubMed  Google Scholar 

  128. Skre H, Berg K. Linkage studies on Marinesco-Sjogren syndrome and hypergonadotropic hypogonadism. Clin Genet. 1977;11:57–66.

    CAS  PubMed  Google Scholar 

  129. Dotti MT, Bardelli AM, De Stefano N, et al. Optic atrophy in Marinesco-Sjogren syndrome: an additional ocular feature. Report of three cases in two families. Ophthalmic Paediatr Genet. 1993;14:5–7.

    CAS  PubMed  Google Scholar 

  130. Goto M, Okada M, Komaki H, et al. A nationwide survey on Marinesco-Sjogren syndrome in Japan. Orphanet J Rare Dis. 2014;9:58.

    PubMed Central  PubMed  Google Scholar 

  131. Takahata T, Yamada K, Yamada Y, et al. Novel mutations in the SIL1 gene in a Japanese pedigree with the Marinesco-Sjogren syndrome. J Hum Genet. 2010;55:142–6.

    PubMed  Google Scholar 

  132. Zhao L, Longo-Guess C, Harris BS, Lee JW, Ackerman SL. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet. 2005;37:974–9.

    CAS  PubMed  Google Scholar 

  133. Senderek J, Krieger M, Stendel C, et al. Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet. 2005;37:1312–4.

    CAS  PubMed  Google Scholar 

  134. Reinhold A, Scheer I, Lehmann R, et al. MR imaging features in Marinesco-Sjogren syndrome: severe cerebellar atrophy is not an obligatory finding. AJNR Am J Neuroradiol. 2003;24:825–8.

    PubMed  Google Scholar 

  135. Aguglia U, Annesi G, Pasquinelli G, et al. Vitamin E deficiency due to chylomicron retention disease in Marinesco-Sjogren syndrome. Ann Neurol. 2000;47:260–4.

    CAS  PubMed  Google Scholar 

  136. Mengel E, Klunemann HH, Lourenco CM, et al. Niemann-Pick disease type C symptomatology: an expert-based clinical description. Orphanet J Rare Dis. 2013;8:166.

    PubMed Central  PubMed  Google Scholar 

  137. Lyseng-Williamson KA. Miglustat: a review of its use in Niemann-Pick disease type C. Drugs. 2014;74:61–74.

    CAS  PubMed  Google Scholar 

  138. Liebeskind DS, Wong S, Hamilton RH. Faces of the giant panda and her cub: MRI correlates of Wilson’s disease. J Neurol Neurosurg Psychiatry. 2003;74:682.

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Singh P, Ahluwalia A, Saggar K, Grewal CS. Wilson’s disease: MRI features. J Pediatr Neurosci. 2011;6:27–8.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Klebe MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klebe, S., Anheim, M. (2015). Genetics of Recessive Ataxias. In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics