Skip to main content

Neurovascular Cognitive Alterations: Implication of Brain Renin–Angiotensin System

Therapeutic Opportunities and Risk Factors

  • Chapter
Psychiatry and Neuroscience Update

Abstract

The neurovascular unit which comprises the microenvironment within small blood vessels in the brain parenchyma is responsible for the maintenance of normal neuronal function by a continuous supply of nutrients. Inflammatory processes and loss of brain–blood-barrier (BBB) integrity can lead to vascular dysfunction and pathological interactions between microvasculature, neurons, and astrocytes. These events have been closely related to the development of brain disorders such as cognitive decline, supported by numerous studies using hypertension animal models. There is a large body of evidence showing the implication of circulating and local renin angiotensin system in cerebral microvasculature function. Angiotensin II, trough AT1 receptor activation, has been related to elevated reactive oxygen species production, endothelial dysfunction, elevated permeability, inflammatory events, and vascular structure alterations. The angiotensin receptor blockers, used in antihypertensive treatments, are an important pharmacologic tool with neuroprotective effects because they can modify vascular damage and improve cognitive alterations. The development of vascular diseases can be influenced and promoted by external factors such as stress and drug abuse. Stress is related to induction of structural changes in arteries and cytokine production leading to endothelial damage and inflammation. It is known that psychostimulants have cardiovascular stimulant effects that can promote cerebral vasculitis and intracranial hemorrhage by direct and indirect mechanisms on the vasculature. The brain renin–angiotensin system is becoming an interesting new therapeutic target for vascular and related cognitive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barr ML. Sistema Nervioso Humano: un punto de vista anatómico. D.F. Harper & Row Latinoamericana: Mexico; 1973.

    Google Scholar 

  2. Hill RW, Wyse GA, Anderson M. Fisiologia animal. Editorial Medica Panamerciana S.A.: Madrid, España; 2006.

    Google Scholar 

  3. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. del Zoppo GJ. Microvascular responses to cerebral ischemia/inflammation. Ann N Y Acad Sci. 1997;823:132–47.

    Article  PubMed  Google Scholar 

  5. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5(5):347–60.

    Article  CAS  PubMed  Google Scholar 

  6. Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  7. Faraci FM. Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol. 2011;300(5):H1566–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cox SB, Woolsey TA, Rovainen CM. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab. 1993;13(6):899–913.

    Article  CAS  PubMed  Google Scholar 

  9. Erinjeri JP, Woolsey TA. Spatial integration of vascular changes with neural activity in mouse cortex. J Cereb Blood Flow Metab. 2002;22(3):353–60.

    Article  PubMed  Google Scholar 

  10. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76.

    Article  CAS  PubMed  Google Scholar 

  11. Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 1985;2006.100(1):328–35.

    Google Scholar 

  12. Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008;7(6):476–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kalaria RN. Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr Rev. 2010;68 Suppl 2:S74–87.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Zacchigna S, Lambrechts D, Carmeliet P. Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci. 2008;9(3):169–81.

    Article  CAS  PubMed  Google Scholar 

  15. Ross MHK, G.I.; Powlina, W. Histologia: texto y atlas color. Con biologia celular y molecular. 4th ed. Bs. As.; Argentina: Editorial Medica Panamericana S.A.; 2005.

    Google Scholar 

  16. Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78(1):53–97.

    CAS  PubMed  Google Scholar 

  17. MacKenzie A. Endothelium-derived vasoactive agents, AT1 receptors and inflammation. Pharmacol Ther. 2011;131(2):187–203.

    Article  CAS  PubMed  Google Scholar 

  18. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  19. Popescu BO, Toescu EC, Popescu LM, Bajenaru O, Muresanu DF, Schultzberg M, et al. Blood–brain barrier alterations in ageing and dementia. J Neurol Sci. 2009;283(1–2):99–106.

    Article  CAS  PubMed  Google Scholar 

  20. Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 2006;86(3):1009–31.

    Article  CAS  PubMed  Google Scholar 

  21. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  22. Zonta M, Sebelin A, Gobbo S, Fellin T, Pozzan T, Carmignoto G. Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol. 2003;553(Pt 2):407–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Radenkovic M, Stojanovic M, Potpara T, Prostran M. Therapeutic approach in the improvement of endothelial dysfunction: the current state of the art. Biomed Res Int. 2013;2013:252158.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hirase T, Node K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol Heart Circ Physiol. 2012;302(3):H499–505.

    Article  CAS  PubMed  Google Scholar 

  25. Chrissobolis S, Faraci FM. The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med. 2008;14(11):495–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Iadecola C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010;120(3):287–96.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, et al. NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke. 2007;38(11):3000–6.

    Article  CAS  PubMed  Google Scholar 

  28. Iadecola C, Hachinski V, Rosenberg GA. Vascular cognitive impairment: introduction. Stroke. 2010;41(10 Suppl):S127–8.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42(9):2672–713.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Mok VC, Wong A, Lam WW, Fan YH, Tang WK, Kwok T, et al. Cognitive impairment and functional outcome after stroke associated with small vessel disease. J Neurol Neurosurg Psychiatry. 2004;75(4):560–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Schneider JA, Bennett DA. Where vascular meets neurodegenerative disease. Stroke. 2010;41(10 Suppl):S144–6.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Schneck MJ. Vascular dementia. Top Stroke Rehabil. 2008;15(1):22–6.

    Article  PubMed  Google Scholar 

  33. Marshall RS. Effects of altered cerebral hemodynamics on cognitive function. J Alzheimers Dis. 2012;32(3):633–42.

    PubMed  Google Scholar 

  34. Shim H. Vascular cognitive impairment and post-stroke cognitive deficits. Curr Neurol Neurosci Rep. 2014;14(1):418.

    Article  PubMed  Google Scholar 

  35. Monsuez JJ, Gesquiere-Dando A, Rivera S. Cardiovascular prevention of cognitive decline. Cardiol Res Pract. 2011;2011:250970.

    PubMed Central  PubMed  Google Scholar 

  36. Debette S. Vascular risk factors and cognitive disorders. Rev Neurol (Paris). 2013;169(10):757–64.

    Article  CAS  Google Scholar 

  37. Braun-Menendez E, Fasciolo JC, Leloir LF, Munoz JM. The substance causing renal hypertension. J Physiol. 1940;98(3):283–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Antunes-Rodrigues J, de Castro M, Elias LL, Valenca MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiol Rev. 2004;84(1):169–208.

    Article  CAS  PubMed  Google Scholar 

  39. Saavedra JM. Brain and pituitary angiotensin. Endocr Rev. 1992;13(2):329–80.

    Article  CAS  PubMed  Google Scholar 

  40. Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20(5):953–70.

    Article  CAS  PubMed  Google Scholar 

  41. Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, et al. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature. 1991;351(6323):230–3.

    Article  CAS  PubMed  Google Scholar 

  42. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991;351(6323):233–6.

    Article  CAS  PubMed  Google Scholar 

  43. Lavoie JL, Sigmund CD. Minireview: overview of the renin-angiotensin system–an endocrine and paracrine system. Endocrinology. 2003;144(6):2179–83.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou J, Pavel J, Macova M, Yu ZX, Imboden H, Ge L, et al. AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke. 2006;37(5):1271–6.

    Article  CAS  PubMed  Google Scholar 

  45. Kumai Y, Ooboshi H, Ago T, Ishikawa E, Takada J, Kamouchi M, et al. Protective effects of angiotensin II type 1 receptor blocker on cerebral circulation independent of blood pressure. Exp Neurol. 2008;210(2):441–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kazama K, Wang G, Frys K, Anrather J, Iadecola C. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol. 2003;285(5):H1890–9.

    Article  CAS  PubMed  Google Scholar 

  47. Yamakawa H, Jezova M, Ando H, Saavedra JM. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab. 2003;23(3):371–80.

    Article  CAS  PubMed  Google Scholar 

  48. Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, et al. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res. 2004;95(10):1019–26.

    Article  CAS  PubMed  Google Scholar 

  49. Girouard H, Park L, Anrather J, Zhou P, Iadecola C. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through nox-2-derived radicals. Arterioscler Thromb Vasc Biol. 2006;26(4):826–32.

    Article  CAS  PubMed  Google Scholar 

  50. Capone C, Faraco G, Anrather J, Zhou P, Iadecola C. Cyclooxygenase 1-derived prostaglandin E2 and EP1 receptors are required for the cerebrovascular dysfunction induced by angiotensin II. Hypertension. 2010;55(4):911–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ando H, Zhou J, Macova M, Imboden H, Saavedra JM. Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke. 2004;35(7):1726–31.

    Article  CAS  PubMed  Google Scholar 

  52. Benicky J, Sanchez-Lemus E, Honda M, Pang T, Orecna M, Wang J, et al. Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology. 2011;36(4):857–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Alvarez A, Cerda-Nicolas M, Naim Abu Nabah Y, Mata M, Issekutz AC, Panes J. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood. 2004;104(2):402–8.

    Article  CAS  PubMed  Google Scholar 

  54. Didion SP, Kinzenbaw DA, Schrader LI, Chu Y, Faraci FM. Endogenous interleukin-10 inhibits angiotensin II-induced vascular dysfunction. Hypertension. 2009;54(3):619–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zhou J, Ando H, Macova M, Dou J, Saavedra JM. Angiotensin II AT1 receptor blockade abolishes brain microvascular inflammation and heat shock protein responses in hypertensive rats. J Cereb Blood Flow Metab. 2005;25(7):878–86.

    Article  CAS  PubMed  Google Scholar 

  56. Lanz TV, Ding Z, Ho PP, Luo J, Agrawal AN, Srinagesh H, et al. Angiotensin II sustains brain inflammation in mice via TGF-beta. J Clin Invest. 2010;120(8):2782–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Negro R. Endothelial effects of antihypertensive treatment: focus on irbesartan. Vasc Health Risk Manag. 2008;4(1):89–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T. Angiotensin II induced cerebral microvascular inflammation and increased blood–brain barrier permeability via oxidative stress. Neuroscience. 2010;171(3):852–8.

    Article  CAS  PubMed  Google Scholar 

  59. Fleegal-DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29(3):640–7.

    Article  CAS  PubMed  Google Scholar 

  60. Kakinuma Y, Hama H, Sugiyama F, Yagami K, Goto K, Murakami K, et al. Impaired blood–brain barrier function in angiotensinogen-deficient mice. Nat Med. 1998;4(9):1078–80.

    Article  CAS  PubMed  Google Scholar 

  61. Baumbach GL, Sigmund CD, Faraci FM. Cerebral arteriolar structure in mice overexpressing human renin and angiotensinogen. Hypertension. 2003;41(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  62. Chan SL, Baumbach GL. Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles. Front Physiol. 2013;4:133.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Touyz RM, Tabet F, Schiffrin EL. Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension. Clin Exp Pharmacol Physiol. 2003;30(11):860–6.

    Article  CAS  PubMed  Google Scholar 

  64. Mimran A, Ribstein J, DuCailar G. Angiotensin II receptor antagonists and hypertension. Clin Exp Hypertens. 1999;21(5–6):847–58.

    Article  CAS  PubMed  Google Scholar 

  65. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52(3):415–72.

    PubMed  Google Scholar 

  66. Inaba S, Iwai M, Furuno M, Tomono Y, Kanno H, Senba I, et al. Continuous activation of renin-angiotensin system impairs cognitive function in renin/angiotensinogen transgenic mice. Hypertension. 2009;53(2):356–62.

    Article  CAS  PubMed  Google Scholar 

  67. Tsukuda K, Mogi M, Li JM, Iwanami J, Min LJ, Sakata A, et al. Amelioration of cognitive impairment in the type-2 diabetic mouse by the angiotensin II type-1 receptor blocker candesartan. Hypertension. 2007;50(6):1099–105.

    Article  CAS  PubMed  Google Scholar 

  68. Engelhorn T, Goerike S, Doerfler A, Okorn C, Forsting M, Heusch G, et al. The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurologic outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab. 2004;24(4):467–74.

    Article  PubMed  Google Scholar 

  69. Pelisch N, Hosomi N, Ueno M, Nakano D, Hitomi H, Mogi M, et al. Blockade of AT1 receptors protects the blood–brain barrier and improves cognition in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2011;24(3):362–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Sharma B, Singh N. Experimental hypertension induced vascular dementia: pharmacological, biochemical and behavioral recuperation by angiotensin receptor blocker and acetylcholinesterase inhibitor. Pharmacol Biochem Behav. 2012;102(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  71. Mochizuki S, Dahlof B, Shimizu M, Ikewaki K, Yoshikawa M, Taniguchi I, et al. Valsartan in a Japanese population with hypertension and other cardiovascular disease (Jikei Heart Study): a randomised, open-label, blinded endpoint morbidity-mortality study. Lancet. 2007;369(9571):1431–9.

    Article  CAS  PubMed  Google Scholar 

  72. Moriwaki H, Uno H, Nagakane Y, Hayashida K, Miyashita K, Naritomi H. Losartan, an angiotensin II (AT1) receptor antagonist, preserves cerebral blood flow in hypertensive patients with a history of stroke. J Hum Hypertens. 2004;18(10):693–9.

    Article  CAS  PubMed  Google Scholar 

  73. Mogi M, Tsukuda K, Li JM, Iwanami J, Min LJ, Sakata A, et al. Inhibition of cognitive decline in mice fed a high-salt and cholesterol diet by the angiotensin receptor blocker, olmesartan. Neuropharmacology. 2007;53(8):899–905.

    Article  CAS  PubMed  Google Scholar 

  74. Vraamark T, Waldemar G, Strandgaard S, Paulson OB. Angiotensin II receptor antagonist CV-11974 and cerebral blood flow autoregulation. J Hypertens. 1995;13(7):755–61.

    Article  CAS  PubMed  Google Scholar 

  75. Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke. 2000;31(10):2478–86.

    Article  CAS  PubMed  Google Scholar 

  76. Pang T, Benicky J, Wang J, Orecna M, Sanchez-Lemus E, Saavedra JM. Telmisartan ameliorates lipopolysaccharide-induced innate immune response through peroxisome proliferator-activated receptor-gamma activation in human monocytes. J Hypertens. 2012;30(1):87–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Ando H, Jezova M, Zhou J, Saavedra JM. Angiotensin II AT1 receptor blockade decreases brain artery inflammation in a stress-prone rat strain. Ann N Y Acad Sci. 2004;1018:345–50.

    Article  CAS  PubMed  Google Scholar 

  78. da Cunha V, Tham DM, Martin-McNulty B, Deng G, Ho JJ, Wilson DW, et al. Enalapril attenuates angiotensin II-induced atherosclerosis and vascular inflammation. Atherosclerosis. 2005;178(1):9–17.

    Article  PubMed  Google Scholar 

  79. Saavedra JM, Sanchez-Lemus E, Benicky J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications. Psychoneuroendocrinology. 2011;36(1):1–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Groeschel M, Braam B. Connecting chronic and recurrent stress to vascular dysfunction: no relaxed role for the renin-angiotensin system. Am J Physiol Renal Physiol. 2011;300(1):F1–10.

    Article  CAS  PubMed  Google Scholar 

  81. Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. J Psychosom Res. 2002;52(1):1–23.

    Article  PubMed  Google Scholar 

  82. Li L, Jonsson-Rylander AC, Abe K, Zukowska Z. Chronic stress induces rapid occlusion of angioplasty-injured rat carotid artery by activating neuropeptide Y and its Y1 receptors. Arterioscler Thromb Vasc Biol. 2005;25(10):2075–80.

    Article  CAS  PubMed  Google Scholar 

  83. Saavedra JM, Ando H, Armando I, Baiardi G, Bregonzio C, Jezova M, et al. Brain angiotensin II, an important stress hormone: regulatory sites and therapeutic opportunities. Ann N Y Acad Sci. 2004;1018:76–84.

    Article  CAS  PubMed  Google Scholar 

  84. Bregonzio C, Armando I, Ando H, Jezova M, Baiardi G, Saavedra JM. Angiotensin II AT1 receptor blockade prevents gastric ulcers during cold-restraint stress. Ann N Y Acad Sci. 2004;1018:351–5.

    Article  CAS  PubMed  Google Scholar 

  85. Loria AS, Pollock DM, Pollock JS. Early life stress sensitizes rats to angiotensin II-induced hypertension and vascular inflammation in adult life. Hypertension. 2010;55(2):494–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Robinson TE, Becker JB. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. 1986;396(2):157–98.

    Article  CAS  PubMed  Google Scholar 

  87. Broadley KJ. The vascular effects of trace amines and amphetamines. Pharmacol Ther. 2010;125(3):363–75.

    Article  CAS  PubMed  Google Scholar 

  88. Siva A. Vasculitis of the nervous system. J Neurol. 2001;248(6):451–68.

    Article  CAS  PubMed  Google Scholar 

  89. Abbound FM, Eckstein JW, Zimmerman BG, Graham MH. Sensitization of Arteries, Veins, and Small Vessels to Norepinephrine after Cocaine. Circ Res. 1964;15:247–57.

    Article  CAS  PubMed  Google Scholar 

  90. Fredericks RK, Lefkowitz DS, Challa VR, Troost BT. Cerebral vasculitis associated with cocaine abuse. Stroke. 1991;22(11):1437–9.

    Article  CAS  PubMed  Google Scholar 

  91. Buxton N, McConachie NS. Amphetamine abuse and intracranial haemorrhage. J R Soc Med. 2000;93(9):472–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Harrington H, Heller HA, Dawson D, Caplan L, Rumbaugh C. Intracerebral hemorrhage and oral amphetamine. Arch Neurol. 1983;40(8):503–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Bregonzio Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marchese, N.A., Casarsa, B.S., Baiardi, G.C., Bregonzio, C. (2015). Neurovascular Cognitive Alterations: Implication of Brain Renin–Angiotensin System. In: Gargiulo, P., Arroyo, H. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-319-17103-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17103-6_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17102-9

  • Online ISBN: 978-3-319-17103-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics