Skip to main content

New Insights in Glutamate-Mediated Mechanisms Underlying Benzodiazepines Dependence and Cocaine Vulnerability

  • Chapter
Psychiatry and Neuroscience Update

Abstract

It has been described that development and persistent expression of addictive behaviors occur through the usurpation of natural learning and memory mechanisms within the limbic system. The hippocampus (HP) and medial prefrontal cortex (mPFC) have been implicated in the neuropathological mechanisms of drug addiction and withdrawal. In cocaine-abstinent human addicts and rats in similar conditions, neuronal activity of the mPFC is increased in response to cocaine reexposure or drug-associated cues and HP synaptic plasticity was increased after both cocaine and diazepam (DZ) repeated exposure in rats. Nitric oxide (NO) is a diffusible neuromodulator synthesized in the brain primarily by glutamatergic receptors activation, and may play a role in initiating and maintaining behavioral effects of psychostimulants and also in modulation of neuronal excitability and synaptic plasticity in different brain structures including the HP and mPFC. In this chapter we discuss some of the molecular and functional changes within the HP and mPFC induced by repeated cocaine or DZ administration and the pharmacological and methodological strategies used to prevent or reverse DZ dependence and cocaine vulnerability, such as those that interfere with NO signaling, HP plasticity or alter environmental cues related to withdrawal symptoms experience. The mechanisms and strategies presented can be explored as possible targets for development of new therapeutic agents to treat dependence of and addiction to psychoactive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luddens H, Korpi ER, Seeburg PH. GABAA/benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacology. 1995;34(3):245–54.

    Article  CAS  PubMed  Google Scholar 

  2. Rabow LE, Russek SJ, Farb DH. From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse. 1995;21(3):189–274.

    Article  CAS  PubMed  Google Scholar 

  3. Sieghart W. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev. 1995;47(2):181–234.

    CAS  PubMed  Google Scholar 

  4. Smith GB, Olsen RW. Functional domains of GABAA receptors. Trends Pharmacol Sci. 1995;16(5):162–8.

    Article  CAS  PubMed  Google Scholar 

  5. Chaudieu I, St-Pierre JA, Quirion R, Boksa P. GABAA receptor-mediated inhibition of N-methyl-D-aspartate-evoked [3H]dopamine release from mesencephalic cell cultures. Eur J Pharmacol. 1994;264(3):361–9.

    Article  CAS  PubMed  Google Scholar 

  6. Stelzer A, Slater NT, ten Bruggencate G. Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature. 1987;326(6114):698–701.

    Article  CAS  PubMed  Google Scholar 

  7. Corda MG, Orlandi M, Lecca D, Giorgi O. Decrease in GABAergic function induced by pentylenetetrazol kindling in rats: antagonism by MK-801. J Pharmacol Exp Ther. 1992;262(2):792–800.

    CAS  PubMed  Google Scholar 

  8. Giorgi O, Orlandi M, Geic M, Corda MG. MK-801 prevents the decrease in 35S-TBPS binding in the rat cerebral cortex induced by pentylenetetrazol kindling. Brain Res Bull. 1991;27(6):835–7.

    Article  CAS  PubMed  Google Scholar 

  9. Ohkuma S, Chen SH, Katsura M, Chen DZ, Kuriyama K. Muscimol prevents neuronal injury induced by NMDA. Jpn J Pharmacol. 1994;64(2):125–8.

    Article  CAS  PubMed  Google Scholar 

  10. Tsuda M, Suzuki T, Misawa M. Recovery of decreased seizure threshold for pentylenetetrazole during diazepam withdrawal by NMDA receptor antagonists. Eur J Pharmacol. 1997;324(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  11. Tsuda M, Suzuki T, Misawa M. Role of the NMDA receptor complex in DMCM-induced seizure in mice. Neuroreport. 1997;8(3):603–6.

    Article  CAS  PubMed  Google Scholar 

  12. File SE. Tolerance to the behavioral actions of benzodiazepines. Neurosci Biobehav Rev. 1985;9(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez JP, McCulloch AJ, Nicholls PJ, Sewell RD, Tekle A. Subacute benzodiazepine treatment: observations on behavioural tolerance and withdrawal. Alcohol Alcohol. 1984;19(4):325–32.

    CAS  PubMed  Google Scholar 

  14. Hallstrom C, Lader M. Benzodiazepine withdrawal phenomena. Int Pharmacopsychiatry. 1981;16(4):235–44.

    CAS  PubMed  Google Scholar 

  15. Rickels K, Case WG, Downing RW, Winokur A. Long-term diazepam therapy and clinical outcome. JAMA. 1983;250(6):767–71.

    Article  CAS  PubMed  Google Scholar 

  16. Petursson H. The benzodiazepine withdrawal syndrome. Addiction. 1994;89(11):1455–9.

    Article  CAS  PubMed  Google Scholar 

  17. Owen RT, Tyrer P. Benzodiazepine dependence. A review of the evidence. Drugs. 1983;25(4):385–98.

    Article  CAS  PubMed  Google Scholar 

  18. Petursson H, Lader MH. Benzodiazepine dependence. Br J Addict. 1981;76(2):133–45.

    Article  CAS  PubMed  Google Scholar 

  19. Cornish JW, O’Brien CP. Crack cocaine abuse: an epidemic with many public health consequences. Annu Rev Public Health. 1996;17:259–73.

    Article  CAS  PubMed  Google Scholar 

  20. Postma SW, Catterall WA. Inhibition of binding of [3H]batrachotoxinin A 20-alpha-benzoate to sodium channels by local anesthetics. Mol Pharmacol. 1984;25(2):219–27.

    CAS  PubMed  Google Scholar 

  21. Reith ME, Kim SS, Lajtha A. Structural requirements for cocaine congeners to interact with [3H]batrachotoxinin A 20-alpha-benzoate binding sites on sodium channels in mouse brain synaptosomes. J Biol Chem. 1986;261(16):7300–5.

    CAS  PubMed  Google Scholar 

  22. Wang GK, Wang SY. Altered stereoselectivity of cocaine and bupivacaine isomers in normal and batrachotoxin-modified Na+channels. J Gen Physiol. 1992;100(6):1003–20.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Kauer JA. Repeated exposure to amphetamine disrupts dopaminergic modulation of excitatory synaptic plasticity and neurotransmission in nucleus accumbens. Synapse. 2004;51(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas MJ, Malenka RC. Synaptic plasticity in the mesolimbic dopamine system. Philos Trans R Soc Lond B Biol Sci. 2003;358(1432):815–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wolf ME, Mangiavacchi S, Sun X. Mechanisms by which dopamine receptors may influence synaptic plasticity. Ann N Y Acad Sci. 2003;1003:241–9.

    Article  CAS  PubMed  Google Scholar 

  26. Shen HW, Toda S, Moussawi K, Bouknight A, Zahm DS, Kalivas PW. Altered dendritic spine plasticity in cocaine-withdrawn rats. J Neurosci. 2009;29(9):2876–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Meyer JS, Quenzer LF. Psychopharmacology: drugs, the brain and behavior. Sunderland, MA: Sinauer Associates, Inc.; 2005.

    Google Scholar 

  28. Liddie S, Balda MA, Itzhak Y. Nitric Oxide (NO) Signaling as a potential therapeutic modality against psychostimulants. Curr Pharm Des. 2013;19(40):7092–102.

    Article  CAS  PubMed  Google Scholar 

  29. Ehrman RN, Robbins SJ, Childress AR, O'Brien CP. Conditioned responses to cocaine-related stimuli in cocaine abuse patients. Psychopharmacology (Berl). 1992;107(4):523–9.

    Article  CAS  Google Scholar 

  30. Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen Psychiatry. 1986;43(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  31. Weiss F, Martin-Fardon R, Ciccocioppo R, Kerr TM, Smith DL, Ben-Shahar O. Enduring resistance to extinction of cocaine-seeking behavior induced by drug-related cues. Neuropsychopharmacology. 2001;25(3):361–72.

    Article  CAS  PubMed  Google Scholar 

  32. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Parent A. Extrinsic connections of the basal ganglia. Trends Neurosci. 1990;13(7):254–8.

    Article  CAS  PubMed  Google Scholar 

  34. Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, et al. Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev. 2004;27(8):739–49.

    Article  CAS  PubMed  Google Scholar 

  35. Pierce RC, Kumaresan V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev. 2006;30(2):215–38.

    Article  CAS  PubMed  Google Scholar 

  36. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, et al. Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. NeuroImage. 2008;39(3):1266–73.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev. 2004;27(8):765–76.

    Article  PubMed  Google Scholar 

  38. Kalivas PW. Perspective: the manifest destiny of cocaine research. Neuropsychopharmacology. 2009;34(5):1089–90.

    Article  PubMed  Google Scholar 

  39. Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev. 1991;16(3):223–44.

    Article  CAS  PubMed  Google Scholar 

  40. Segal DS, Geyer MA, Schuckit MA. Stimulant-induced psychosis: an evaluation of animal methods. Essays Neurochem Neuropharmacol. 1981;5:95–129.

    CAS  PubMed  Google Scholar 

  41. Robinson TE, Becker JB. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. 1986;396(2):157–98.

    Article  CAS  PubMed  Google Scholar 

  42. Wolf ME. Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol Interv. 2002;2(3):146–57.

    Article  CAS  PubMed  Google Scholar 

  43. Itzhak Y, Roger-Sanchez C, Kelley JB, Anderson KL. Discrimination between cocaine-associated context and cue in a modified conditioned place preference paradigm: role of the nNOS gene in cue conditioning. Int J Neuropsychopharmacol. 2010;13(2):171–80.

    Article  CAS  PubMed  Google Scholar 

  44. Everitt BJ, Wolf ME. Psychomotor stimulant addiction: a neural systems perspective. J Neurosci. 2002;22(9):3312–20.

    CAS  PubMed  Google Scholar 

  45. Steketee JD. Cortical mechanisms of cocaine sensitization. Crit Rev Neurobiol. 2005;17(2):69–86.

    Article  CAS  PubMed  Google Scholar 

  46. Belujon P, Grace AA. Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann N Y Acad Sci. 2011;1216:114–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Boudreau AC, Wolf ME. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neurosci. 2005;25(40):9144–51.

    Article  CAS  PubMed  Google Scholar 

  48. Churchill L, Swanson CJ, Urbina M, Kalivas PW. Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J Neurochem. 1999;72(6):2397–403.

    Article  CAS  PubMed  Google Scholar 

  49. Pierce RC, Bell K, Duffy P, Kalivas PW. Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci. 1996;16(4):1550–60.

    CAS  PubMed  Google Scholar 

  50. Perez MF, Gabach LA, Almiron RS, Carlini VP, De Barioglio SR, Ramirez OA. Different chronic cocaine administration protocols induce changes on dentate gyrus plasticity and hippocampal dependent behavior. Synapse. 2010;64(10):742–53.

    CAS  PubMed  Google Scholar 

  51. White FJ, Hu XT, Zhang XF, Wolf ME. Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J Pharmacol Exp Ther. 1995;273(1):445–54.

    CAS  PubMed  Google Scholar 

  52. Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science. 2001;292(5519):1175–8.

    Article  CAS  PubMed  Google Scholar 

  53. Jentsch JD, Taylor JR. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl). 1999;146(4):373–90.

    Article  CAS  Google Scholar 

  54. Marin RH, Perez MF, Duero DG, Ramirez OA. Preexposure to drug administration context blocks the development of tolerance to sedative effects of diazepam. Pharmacol Biochem Behav. 1999;64(3):473–7.

    Article  CAS  PubMed  Google Scholar 

  55. Perez MF, Nasif FJ, Marchesini GR, Maglio LE, Ramirez OA. Hippocampus and locus coeruleus activity on rats chronically treated with diazepam. Pharmacol Biochem Behav. 2001;69(3–4):431–8.

    Article  CAS  PubMed  Google Scholar 

  56. Tan KR, Brown M, Labouebe G, Yvon C, Creton C, Fritschy JM, et al. Neural bases for addictive properties of benzodiazepines. Nature. 2010;463(7282):769–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Perez MF, Maglio LE, Marchesini GR, Molina JC, Ramirez OA. Environmental changes modify the expression of diazepam withdrawal. Behav Brain Res. 2002;136(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  58. Monti MC, Almiron RS, Bignante EA, Ramirez OA. Changes in hippocampal arc protein expression and synaptic plasticity by the presentation of contextual cues linked to drug experience. Synapse. 2010;64(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  59. Siegel S. Evidence from rats that morphine tolerance is a learned response. J Comp Physiol Psychol. 1975;89(5):498–506.

    Article  CAS  PubMed  Google Scholar 

  60. Siegel S. Morphine tolerance acquisition as an associative process. J Exp Psychol Anim Behav Process. 1977;3(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  61. Wikler A. Dynamics of drug dependence. Implications of a conditioning theory for research and treatment. Arch Gen Psychiatry. 1973;28(5):611–6.

    Article  CAS  PubMed  Google Scholar 

  62. Ludwig AM, Stark LH. Alcohol craving. Subjective and situational aspects. Q J Stud Alcohol. 1974;35(3):899–905.

    CAS  PubMed  Google Scholar 

  63. O'Brien CP, Testa T, O'Brien TJ, Brady JP, Wells B. Conditioned narcotic withdrawal in humans. Science. 1977;195(4282):1000–2.

    Article  PubMed  Google Scholar 

  64. Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci. 2001;2(10):695–703.

    Article  CAS  PubMed  Google Scholar 

  65. Taubenfeld SM, Muravieva EV, Garcia-Osta A, Alberini CM. Disrupting the memory of places induced by drugs of abuse weakens motivational withdrawal in a context-dependent manner. Proc Natl Acad Sci U S A. 2010;107(27):12345–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ciccocioppo R, Sanna PP, Weiss F. Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: reversal by D(1) antagonists. Proc Natl Acad Sci U S A. 2001;98(4):1976–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Nestler EJ. Psychogenomics: opportunities for understanding addiction. J Neurosci. 2001;21(21):8324–7.

    CAS  PubMed  Google Scholar 

  68. Eisch AJ, Mandyam CD. Drug dependence and addiction, II: adult neurogenesis and drug abuse. Am J Psychiatry. 2004;161(3):426.

    Article  PubMed  Google Scholar 

  69. del Olmo N, Miguens M, Higuera-Matas A, Torres I, Garcia-Lecumberri C, Solis JM, et al. Enhancement of hippocampal long-term potentiation induced by cocaine self-administration is maintained during the extinction of this behavior. Brain Res. 2006;1116(1):120–6.

    Article  PubMed  CAS  Google Scholar 

  70. Kim JJ, Fanselow MS. Modality-specific retrograde amnesia of fear. Science. 1992;256(5057):675–7.

    Article  CAS  PubMed  Google Scholar 

  71. Sinha R. How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berl). 2001;158(4):343–59.

    Article  CAS  Google Scholar 

  72. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106(2):274–85.

    Article  CAS  PubMed  Google Scholar 

  73. Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649–711.

    Article  CAS  PubMed  Google Scholar 

  74. Gabach LA, Carlini VP, Monti MC, Maglio LE, De Barioglio SR, Perez MF. Involvement of nNOS/NO/sGC/cGMP signaling pathway in cocaine sensitization and in the associated hippocampal alterations: does phosphodiesterase 5 inhibition help to drug vulnerability? Psychopharmacology (Berl). 2013;229(1):41–50.

    Article  CAS  Google Scholar 

  75. Thompson AM, Swant J, Gosnell BA, Wagner JJ. Modulation of long-term potentiation in the rat hippocampus following cocaine self-administration. Neuroscience. 2004;127(1):177–85.

    Article  CAS  PubMed  Google Scholar 

  76. Fuster JM. Frontal lobe and cognitive development. J Neurocytol. 2002;31(3–5):373–85.

    Article  PubMed  Google Scholar 

  77. Miller EK. The prefrontal cortex and cognitive control. Nat Rev Neurosci. 2000;1(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  78. Quirk GJ, Beer JS. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol. 2006;16(6):723–7.

    Article  CAS  PubMed  Google Scholar 

  79. Sotres-Bayon F, Cain CK, LeDoux JE. Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry. 2006;60(4):329–36.

    Article  PubMed  Google Scholar 

  80. Tzschentke TM. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol. 2001;63(3):241–320.

    Article  CAS  PubMed  Google Scholar 

  81. Volkow ND, Ding YS, Fowler JS, Wang GJ. Cocaine addiction: hypothesis derived from imaging studies with PET. J Addict Dis. 1996;15(4):55–71.

    Article  CAS  PubMed  Google Scholar 

  82. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O'Brien CP. Limbic activation during cue-induced cocaine craving. Am J Psychiatry. 1999;156(1):11–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Li Y, Hu XT, Berney TG, Vartanian AJ, Stine CD, Wolf ME, et al. Both glutamate receptor antagonists and prefrontal cortex lesions prevent induction of cocaine sensitization and associated neuroadaptations. Synapse. 1999;34(3):169–80.

    Article  CAS  PubMed  Google Scholar 

  84. Pierce RC, Reeder DC, Hicks J, Morgan ZR, Kalivas PW. Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience. 1998;82(4):1103–14.

    Article  CAS  PubMed  Google Scholar 

  85. Wolf ME. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol. 1998;54(6):679–720.

    Article  CAS  PubMed  Google Scholar 

  86. Peterson JD, Wolf ME, White FJ. Altered responsiveness of medial prefrontal cortex neurons to glutamate and dopamine after withdrawal from repeated amphetamine treatment. Synapse. 2000;36(4):342–4.

    Article  CAS  PubMed  Google Scholar 

  87. Dong Y, Nasif FJ, Tsui JJ, Ju WY, Cooper DC, Hu XT, et al. Cocaine-induced plasticity of intrinsic membrane properties in prefrontal cortex pyramidal neurons: adaptations in potassium currents. J Neurosci. 2005;25(4):936–40.

    Article  CAS  PubMed  Google Scholar 

  88. Nasif FJ, Sidiropoulou K, Hu XT, White FJ. Repeated cocaine administration increases membrane excitability of pyramidal neurons in the rat medial prefrontal cortex. J Pharmacol Exp Ther. 2005;312(3):1305–13.

    Article  CAS  PubMed  Google Scholar 

  89. Mustafa AK, Gadalla MM, Snyder SH. Signaling by gasotransmitters. Sci Signal. 2009;2(68):re2.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Garthwaite J. New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol Cell Biochem. 2010;334(1–2):221–32.

    Article  CAS  PubMed  Google Scholar 

  91. Garthwaite J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci. 2008;27(11):2783–802.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Prast H, Philippu A. Nitric oxide as modulator of neuronal function. Prog Neurobiol. 2001;64(1):51–68.

    Article  CAS  PubMed  Google Scholar 

  93. Itzhak Y. Attenuation of cocaine kindling by 7-nitroindazole, an inhibitor of brain nitric oxide synthase. Neuropharmacology. 1996;35(8):1065–73.

    Article  CAS  PubMed  Google Scholar 

  94. Kim HS, Park WK. Nitric oxide mediation of cocaine-induced dopaminergic behaviors: ambulation-accelerating activity, reverse tolerance and conditioned place preference in mice. J Pharmacol Exp Ther. 1995;275(2):551–7.

    CAS  PubMed  Google Scholar 

  95. Orsini C, Izzo E, Koob GF, Pulvirenti L. Blockade of nitric oxide synthesis reduces responding for cocaine self-administration during extinction and reinstatement. Brain Res. 2002;925(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  96. Nasif FJ, Hu XT, Ramirez OA, Perez MF. Inhibition of neuronal nitric oxide synthase prevents alterations in medial prefrontal cortex excitability induced by repeated cocaine administration. Psychopharmacology (Berl). 2011;218(2):323–30.

    Article  CAS  Google Scholar 

  97. Talarek S, Fidecka S. Role of nitric oxide in benzodiazepines-induced antinociception in mice. Pol J Pharmacol. 2002;54(1):27–34.

    CAS  PubMed  Google Scholar 

  98. Talarek S, Fidecka S. Role of nitric oxide in anticonvulsant effects of benzodiazepines in mice. Pol J Pharmacol. 2003;55(2):181–91.

    CAS  PubMed  Google Scholar 

  99. Talarek S, Fidecka S. Involvement of nitricoxidergic system in the hypnotic effects of benzodiazepines in mice. Pol J Pharmacol. 2004;56(6):719–26.

    CAS  PubMed  Google Scholar 

  100. Talarek S, Listos J, Fidecka S. Role of nitric oxide in the development of tolerance to diazepam-induced motor impairment in mice. Pharmacol Rep. 2008;60(4):475–82.

    CAS  PubMed  Google Scholar 

  101. Talarek S, Listos J, Fidecka S. Effect of nitric oxide synthase inhibitors on benzodiazepine withdrawal in mice and rats. Pharmacol Rep. 2011;63(3):680–9.

    Article  CAS  PubMed  Google Scholar 

  102. Groenewegen HJ, Wright CI, Beijer AV, Voorn P. Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci. 1999;877:49–63.

    Article  CAS  PubMed  Google Scholar 

  103. Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J Neurosci. 2001;21(23):9471–7.

    PubMed  Google Scholar 

  104. French SJ, Totterdell S. Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J Comp Neurol. 2002;446(2):151–65.

    Article  PubMed  Google Scholar 

  105. Thompson AM, Gosnell BA, Wagner JJ. Enhancement of long-term potentiation in the rat hippocampus following cocaine exposure. Neuropharmacology. 2002;42(8):1039–42.

    Article  CAS  PubMed  Google Scholar 

  106. Sammut S, Threlfell S, West AR. Nitric oxide-soluble guanylyl cyclase signaling regulates corticostriatal transmission and short-term synaptic plasticity of striatal projection neurons recorded in vivo. Neuropharmacology. 2010;58(3):624–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Boccia MM, Blake MG, Krawczyk MC, Baratti CM. Sildenafil, a selective phosphodiesterase type 5 inhibitor, enhances memory reconsolidation of an inhibitory avoidance task in mice. Behav Brain Res. 2011;220(2):319–24.

    Article  CAS  PubMed  Google Scholar 

  108. Puzzo D, Staniszewski A, Deng SX, Privitera L, Leznik E, Liu S, et al. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer's disease mouse model. J Neurosci. 2009;29(25):8075–86.

    Article  CAS  PubMed  Google Scholar 

  109. Sammut S, West AR. Acute cocaine administration increases NO efflux in the rat prefrontal cortex via a neuronal NOS-dependent mechanism. Synapse. 2008;62(9):710–3.

    Article  CAS  PubMed  Google Scholar 

  110. Bagetta G, Rodino P, Arabia A, Massoud R, Paoletti AM, Nistico R, et al. Systemic administration of cocaine, given alone or in combination with sensory stimuli, differentially affects L-arginine-nitric oxide metabolism in discrete regions of the brain of rat. Neurosci Lett. 1999;266(3):153–6.

    Article  CAS  PubMed  Google Scholar 

  111. Bhargava HN, Kumar S. Sensitization to the locomotor stimulant activity of cocaine is associated with increases in nitric oxide synthase activity in brain regions and spinal cord of mice. Pharmacology. 1997;55(6):292–8.

    Article  CAS  PubMed  Google Scholar 

  112. Monti MC, Gabach LA, Perez MF, Ramirez OA. Impact of contextual cues in the expression of the memory associated with diazepam withdrawal: involvement of hippocampal PKMzeta in vivo, and Arc expression and LTP in vitro. Eur J Neurosci. 2012;36(8):3118–25.

    Article  PubMed  Google Scholar 

  113. Frey U, Frey S, Schollmeier F, Krug M. Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J Physiol. 1996;490(Pt 3):703–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Nguyen PV, Kandel ER. A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J Neurosci. 1996;16(10):3189–98.

    CAS  PubMed  Google Scholar 

  115. Guzowski JF, McNaughton BL, Barnes CA, Worley PF. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci. 1999;2(12):1120–4.

    Article  CAS  PubMed  Google Scholar 

  116. Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, et al. The Arc of synaptic memory. Exp Brain Res. 2010;200(2):125–40.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Messaoudi E, Kanhema T, Soule J, Tiron A, Dagyte G, da Silva B, et al. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci. 2007;27(39):10445–55.

    Article  CAS  PubMed  Google Scholar 

  118. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC. Storage of spatial information by the maintenance mechanism of LTP. Science. 2006;313(5790):1141–4.

    Article  CAS  PubMed  Google Scholar 

  119. Sacktor TC. How does PKMzeta maintain long-term memory? Nat Rev Neurosci. 2011;12(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  120. Smith KM, Romanelli F. Recreational use and misuse of phosphodiesterase 5 inhibitors. J Am Pharm Assoc. 2005;45(1):63–72. quiz 3–5.

    Article  Google Scholar 

  121. McCambridge J, Mitcheson L, Hunt N, Winstock A. The rise of Viagra among British illicit drug users: 5-year survey data. Drug Alcohol Rev. 2006;25(2):111–3.

    Article  PubMed  Google Scholar 

Download references

Disclosures/Conflicts

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariela F. Pérez Pharm.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Villarmois, E.A., Gabach, L.A., Pérez, M.F. (2015). New Insights in Glutamate-Mediated Mechanisms Underlying Benzodiazepines Dependence and Cocaine Vulnerability. In: Gargiulo, P., Arroyo, H. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-319-17103-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17103-6_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17102-9

  • Online ISBN: 978-3-319-17103-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics