Skip to main content

Circadian Synchronization of Cognitive Functions

  • Chapter
Psychiatry and Neuroscience Update

Abstract

Animals, human beings among them, can adapt their behavior to (predictable) temporal fluctuations in the environment (such as day and night alternation, food and water availability, or social contact) by learning and memory processes interacting with an endogenous circadian clock. Behavioral, physiological, and biochemical circadian rhythms are crucial for the good mental health of an individual and rely on the integrity and functioning of the circadian system. The master clock in the suprachiasmatic nucleus synchronizes independent circadian peripheral clocks, localized in other brain areas, organs, and tissues to the appropriate phases by neural and humoral signals. Thus, circadian clocks orchestrate interactions between the organism’s internal processes and the environment in healthy, but also in pathological, conditions. This chapter focuses on the main components of the circadian system; the temporal organization of cognitive functions at the molecular, biochemical, and behavioural levels and their clock-mediated regulation; as well as on factors that could disrupt the normal functioning of the circadian system and thus, contribute to the etiology of cognitive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wirz-Justice A. Temporal organization as a therapeutic target. Dialogues Clin Neurosci. 2012;14:335–7.

    PubMed Central  PubMed  Google Scholar 

  2. Chaudhury D, Wang LM, Colwell CS. Circadian regulation of hippocampal long-term potentiation. J Biol Rhythms. 2005;20:225–36.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Carrier J, Monk TH. Circadian rhythms of performance: new trends. Chronobiol Int. 2000;17:719–32.

    Article  CAS  PubMed  Google Scholar 

  4. Bob P, Fedor-Freybergh P. Melatonin, consciousness, and traumatic stress. J Pineal Res. 2008;44:341–7.

    Article  CAS  PubMed  Google Scholar 

  5. Zee PC, Manthena P. The brain’s master circadian clock: implications and opportunities for therapy of sleep disorders. Sleep Med Rev. 2007;11:59–70.

    Article  PubMed  Google Scholar 

  6. Rutten S, Vriend C, van den Heuvel OA, Smit JH, Berendse HW, van der Werf YD. Bright light therapy in Parkinson’s disease: an overview of the background and evidence. Parkinsons Dis. 2012;2012:767105.

    PubMed Central  PubMed  Google Scholar 

  7. Mulder CK, Gerkema MP, VanderZee EA. Circadian clocks and memory: time-place learning. Front Mol Neurosci. 2013;6:1–10.

    Article  Google Scholar 

  8. Cui Z, Gerfen CR, Young 3rd WS. Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus. J Comp Neurol. 2013;521:1844–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–41.

    Article  CAS  PubMed  Google Scholar 

  10. Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol. 2007;8:139–48.

    Article  CAS  PubMed  Google Scholar 

  11. Lowrey PL, Takahashi JS. Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu Rev Genet. 2000;34:533–62.

    Article  CAS  PubMed  Google Scholar 

  12. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptácek LJ, Fu YH. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291:1040–3.

    Article  CAS  PubMed  Google Scholar 

  13. Kwon I, Choe HK, Son GH, Kim K. Mammalian molecular clocks. Exp Neurobiol. 2011;20:18–28.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hay RT. SUMO: a history of modification. Mol Cell. 2005;18:1–12.

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Lee Y, Lee MJ, Park E, Kang SH, Chung CH, et al. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol Cell Biol. 2008;28(19):6056–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 2001;293:510–4.

    Article  CAS  PubMed  Google Scholar 

  17. Boone DR, Sell SL, Micci MA, Crookshanks JM, Parsley M, Uchida T, Prough DS, DeWitt DS, Hellmich HL. Traumatic brain injury-induced dysregulation of the circadian clock. PLoS One. 2012;7:e46204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rosenberg J, Maximov II, Reske M, Grinberg F, Shah NJ. Early to bed, early to rise: diffusion tensor imaging identifies chronotype-specificity. Neuroimage. 2014;84:428–34.

    Article  PubMed  Google Scholar 

  19. Dijk DJ, Archer SN. PERIOD3, circadian phenotypes, and sleep homeostasis. Sleep Med Rev. 2010;14:151–60.

    Article  PubMed  Google Scholar 

  20. Maire M, Reichert CF, Schmidt C. Sleep-wake rhythms and cognition. J Cogn Behav Psychother. 2013;13:133–70.

    Google Scholar 

  21. Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, von Schantz M, Dijk DJ. PER3 polymorphism predicts sleep structure and waking performance. Curr Biol. 2007;17:613–8.

    Article  CAS  PubMed  Google Scholar 

  22. Holloway FA, Wansley R. Multiphasic retention deficits at periodic intervals after passive-avoidance learning. Science. 1973;180:208–10.

    Article  CAS  PubMed  Google Scholar 

  23. Stephan FK, Kovacevic NS. Multiple retention deficit in passive avoidance in rats is eliminated by suprachiasmatic lesions. Behav Biol. 1978;22:456–62.

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann HJ, Balschun D. Circadian differences in maze performance of C57BL/6 OLA mice. Behav Processes. 1992;27:77–83.

    Article  CAS  PubMed  Google Scholar 

  25. Valentinuzzi VS, Buxton OM, Chang AM, Scarbrough K, Ferrari EA, Takahashi JS, Turek FW. Locomotor response to an open field during C57BL/6J active and inactive phases: differences dependent on conditions of illumination. Physiol Behav. 2000;69:269–75.

    Article  CAS  PubMed  Google Scholar 

  26. Winocur G, Hasher L. Aging and time-of-day effects on cognition in rats. Behav Neurosci. 1999;113:991–7.

    Article  CAS  PubMed  Google Scholar 

  27. Winocur G, Hasher L. Age and time-of-day effects on learning and memory in a non-matching-to-sample test. Neurobiol Aging. 2004;25:1107–15.

    Article  PubMed  Google Scholar 

  28. Valentinuzzi VS, Neto SP, Carneiro BT, Santana KS, Araújo JF, Ralph MR. Memory for time of training modulates performance on a place conditioning task in marmosets. Neurobiol Learn Mem. 2008;89:604–7.

    Article  CAS  PubMed  Google Scholar 

  29. Atkinson G, Reilly T. Circadian variation in sports performance. Sports Med. 1996;21:292–312.

    Article  CAS  PubMed  Google Scholar 

  30. Chaudhury D, Colwell CS. Circadian modulation of learning and memory in fear-conditioned mice. Behav Brain Res. 2002;133:95–108.

    Article  PubMed  Google Scholar 

  31. Wright KP, Hull JT, Hughes RJ, Ronda JM, Czeisler CA. Sleep and wakefulness out of phase with internal biological time impairs learning in humans. J Cogn Neurosci. 2006;18:508–21.

    Article  PubMed  Google Scholar 

  32. Ruby NF, Hwang CE, Wessells C, Fernandez F, Zhang P, Sapolsky R, Heller HC. Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci U S A. 2008;105:15593–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Miller NL, Tvaryanas AP, Shattuck LG. Accommodating adolescent sleep-wake patterns: the effects of shifting the timing of sleep on training effectiveness. Sleep. 2012;35:1123–36.

    PubMed Central  PubMed  Google Scholar 

  34. Katoh-Semba R, Tsuzuki M, Miyazaki N, Matsuda M, et al. A phase advance of the light–dark cycle stimulates production of BDNF, but not of other neurotrophins, in the adult rat cerebral cortex: association with the activation of CREB. J Neurochem. 2008;106:2131–42.

    Article  CAS  PubMed  Google Scholar 

  35. Cirelli C, Gutierrez CM, Tononi G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron. 2004;41:35–43.

    Article  CAS  PubMed  Google Scholar 

  36. Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature. 2004;430:78–81.

    Article  CAS  PubMed  Google Scholar 

  37. Wagner U, Gais S, Haider H, Verleger R, Born J. Sleep inspires insight. Nature. 2004;427:352–5.

    Article  CAS  PubMed  Google Scholar 

  38. Golini RS, Delgado SM, Navigatore Fonzo LS, Ponce IT, Lacoste MG, Anzulovich AC. Daily patterns of clock and cognition-related factors are modified in the hippocampus of vitamin A-deficient rats. Hippocampus. 2012;22:1720–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fonzo LS, Golini RS, Delgado SM, Ponce IT, Bonomi MR, Rezza IG, Gimenez MS, Anzulovich AC. Temporal patterns of lipoperoxidation and antioxidant enzymes are modified in the hippocampus of vitamin A-deficient rats. Hippocampus. 2009;19:869–80.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt C, Collette F, Leclercq Y, Sterpenich V, et al. Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area. Science. 2009;324:516–9.

    Article  CAS  PubMed  Google Scholar 

  41. Landolt HP. Genetic determination of sleep EEG profiles in healthy humans. Prog Brain Res. 2011;193:51–61.

    Article  PubMed  Google Scholar 

  42. Benca R, Duncan MJ, Frank E, McClung C, Nelson RJ, Vicentic A. Biological rhythms, higher brain function, and behavior: Gaps, opportunities, and challenges. Brain Res Rev. 2009;62:57–70.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Liston C, Cichon JM, Jeanneteau F, Jia Z, Chao MV, Gan WB. Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci. 2013;16:698–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Chung S, Son GH, Kim K. Circadian rhythm of adrenal glucocorticoid: its regulation and clinical implications. Biochim Biophys Acta. 1812;2011:581–91.

    Google Scholar 

  45. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006;4:163–73.

    Article  CAS  PubMed  Google Scholar 

  46. Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol. 2011;32:451–65.

    Article  CAS  PubMed  Google Scholar 

  47. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998;393:809–12.

    Article  CAS  PubMed  Google Scholar 

  48. Yang S, Van Dongen HPA, Wang K, Berrettini W, Bućan M. Assessment of circadian function in fibroblasts of patients with bipolar disorder. Mol Psychiatry. 2008;14:143–55.

    Article  CAS  PubMed  Google Scholar 

  49. Navigatore-Fonzo LS, Delgado SM, Golini RS, Anzulovich AC. Circadian rhythms of locomotor activity and hippocampal clock genes expression are dampened in vitamin A-deficient rats. Nutr Res. 2014;34(4):326–35.

    Article  CAS  PubMed  Google Scholar 

  50. Wright KP, Lowry CA, Lebourgeois MK. Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci. 2012;5:50.

    PubMed Central  PubMed  Google Scholar 

  51. Cho K. Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci. 2001;4:567–8.

    Article  CAS  PubMed  Google Scholar 

  52. Touitou Y. Internal clock desynchronization, light and melatonin. Bull Acad Natl Med. 2011;195:1527–49.

    CAS  PubMed  Google Scholar 

  53. Reddy AB, Field MD, Maywood ES, Hastings MH. Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J Neurosci. 2002;22:7326–30.

    CAS  PubMed  Google Scholar 

  54. Verwey M, Amir S. Food-entrainable circadian oscillators in the brain. Eur J Neurosci. 2009;30:1650–7.

    Article  CAS  PubMed  Google Scholar 

  55. Feillet CA, Albrecht U, Challet E. “Feeding time” for the brain: a matter of clocks. J Physiol Paris. 2006;100:252–60.

    Article  PubMed  Google Scholar 

  56. Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S. Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci. 2001;13:1190–6.

    Article  CAS  PubMed  Google Scholar 

  57. Stephan K. The “other” circadian system: food as zeitgeber. J Biol Rhythms. 2002;17:284–92.

    Article  PubMed  Google Scholar 

  58. Pardini L, Kaeffer B. Feeding and circadian clocks. Reprod Nutr Dev. 2006;46:463–80.

    Article  CAS  PubMed  Google Scholar 

  59. Navigatore-Fonzo LS, Golini RL, Ponce IT, Delgado SM, Plateo-Pignatari MG, Gimenez MS, Anzulovich AC. Retinoic acid receptors move in time with the clock in the hippocampus. Effect of a vitamin-A-deficient diet. J Nutr Biochem. 2013;24:859–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Bennett MR, Schwartz WJ. Altered circadian rhythmicity is an early sign of murine dietary thiamine deficiency. J Neurol Sci. 1999;163:6–10.

    Article  CAS  PubMed  Google Scholar 

  61. Partch CL, Sancar A. Cryptochromes and circadian photoreception in animals. Methods Enzymol. 2005;393:726–45.

    Article  CAS  PubMed  Google Scholar 

  62. Fournier I, Ploye F, Cottet-Emard JM, Brun J, Claustrat B. Folate deficiency alters melatonin secretion in rats. J Nutr. 2002;132:2781–4.

    CAS  PubMed  Google Scholar 

  63. Challet E, Dumont S, Mehdi MK, Allemann C, Bousser T, Gourmelen S, Sage-Ciocca D, Hicks D, Pévet P, Claustrat B. Aging-like circadian disturbances in folate-deficient mice. Neurobiol Aging. 2013;34:1589–98.

    Article  CAS  PubMed  Google Scholar 

  64. Mahlberg R, Walther S, Kalus P, Bohner G, Haedel S, Reischies FM, Kühl KP, Hellweg R, Kunz D. Pineal calcification in Alzheimer’s disease: an in vivo study using computed tomography. Neurobiol Aging. 2008;29:203–9.

    Article  CAS  PubMed  Google Scholar 

  65. Eichenbaum H. The hippocampal system and declarative memory in animals. J Cogn Neurosci. 1992;4:217–31.

    Article  CAS  PubMed  Google Scholar 

  66. Izquierdo I, Medina JH, Vianna MR, Izquierdo LA, Barros DM. Separate mechanisms for short- and long-term memory. Behav Brain Res. 1999;103:1–11.

    Article  CAS  PubMed  Google Scholar 

  67. Valentinuzzi VS, Pastrane-Diniz G, Menna-Barreto L, Xavier GF. The experience in the water maze task can affect the circadian rhythm of locomotor activity. Biol Rhythm Res. 2007;38:399–414.

    Article  Google Scholar 

  68. Durlach J, Pagès N, Bac P, Bara M, Guiet-Bara A, Agrapart C. Chronopathological forms of magnesium depletion with hypofunction or with hyperfunction of the biological clock. Magnes Res. 2002;15:263–8.

    CAS  PubMed  Google Scholar 

  69. Youdim MB. Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. Neurotox Res. 2008;14:45–56.

    Article  CAS  PubMed  Google Scholar 

  70. Stranahan AM. Chronobiological approaches to Alzheimer’s disease. Curr Alzheimer Res. 2012;9:93–8.

    Article  CAS  PubMed  Google Scholar 

  71. Mirmiran M, Swaab DF, Kok JH, Hofman MA, Witting W, Van Gool WA. Circadian rhythms and the suprachiasmatic nucleus in perinatal development, aging and Alzheimer’s disease. Prog Brain Res. 1992;93:151–62.

    Article  CAS  PubMed  Google Scholar 

  72. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 2006;20:1868–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Kondratova AA, Dubrovsky YV, Antoch MP, Kondratov RV. Circadian clock proteins control adaptation to novel environment and memory formation. Aging. 2010;2:285–97.

    CAS  PubMed  Google Scholar 

  74. Wyse CA, Coogan AN. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res. 2010;1337:21–31.

    Article  CAS  PubMed  Google Scholar 

  75. Mirescu C, Peters JD, Noiman L, Gould E. Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Proc Natl Acad Sci U S A. 2006;103:19170–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Mueller AD, Pollock MS, Lieblich SE, Epp JR, Galea LA, Mistlberger RE. Sleep deprivation can inhibit adult hippocampal neurogenesis independent of adrenal stress hormones. Am J Physiol Regul Integr Comp Physiol. 2008;294:R1693–703.

    Article  CAS  PubMed  Google Scholar 

  77. Chen JR, Wang TJ, Huang HY, Chen LJ, Huang YS, Wang YJ, Tseng GF. Fatigue reversibly reduced cortical and hippocampal dendritic spines concurrent with compromise of motor endurance and spatial memory. Neuroscience. 2009;160:1104–13.

    Article  CAS  Google Scholar 

  78. Selkoe DJ. Presenilin, Notch, and the genesis and treatment of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2001;98:11039–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.

    Article  CAS  PubMed  Google Scholar 

  80. Iwata N, Tsubuki S, Takaki Y, Watanabe K, et al. Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med. 2000;6:143–50.

    Article  CAS  PubMed  Google Scholar 

  81. Jiang Q, Lee CY, Mandrekar S, Wilkinson B, et al. ApoE promotes the proteolytic degradation of Abeta. Neuron. 2008;58:681–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Miller BW, Willett KC, Desilets AR. Rosiglitazone and pioglitazone for the treatment of Alzheimer’s disease. Ann Pharmacother. 2011;45:1416–24.

    Article  CAS  PubMed  Google Scholar 

  83. Lefebvre P, Benomar Y, Staels B. Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab. 2010;21:676–83.

    Article  CAS  PubMed  Google Scholar 

  84. Satoh J, Kuroda Y. Amyloid precursor protein beta-secretase (BACE) mRNA expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines and growth factors. Neuropathology. 2000;20:289–96.

    Article  CAS  PubMed  Google Scholar 

  85. Ding Y, Qiao A, Wang Z, Goodwin JS, Lee ES, Block ML, Allsbrook M, McDonald MP, Fan GH. Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model. J Neurosci. 2008;28:11622–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Harper DG, Volicer L, Stopa EG, McKee AC, Nitta M, Satlin A. Disturbance of endogenous circadian rhythm in aging and Alzheimer disease. Am J Geriatr Psychiatry. 2005;13:359–68.

    Article  PubMed  Google Scholar 

  87. Van Someren EJ, Hagebeuk EE, Lijzenga C, Scheltens P, de Rooij SE, Jonker C, Pot AM, Mirmiran M, Swaab DF. Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol Psychiatry. 1996;40:259–70.

    Article  PubMed  Google Scholar 

  88. Bhatt MH, Podder N, Chokroverty S. Sleep and neurodegenerative diseases. Semin Neurol. 2005;25:39–51.

    Article  PubMed  Google Scholar 

  89. Martin J, Marler M, Shochat T, Ancoli-Israel S. Circadian rhythms of agitation in institutionalized patients with Alzheimer’s disease. Chronobiol Int. 2000;17:405–18.

    Article  CAS  PubMed  Google Scholar 

  90. Antoch MP, Gorbacheva VY, Vykhovanets O, Toshkov IA, Kondratov RV, Kondratova AA, Lee C, Nikitin AY. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle. 2008;7:1197–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci. 2010;11:589–99.

    Article  CAS  PubMed  Google Scholar 

  92. Giubilei F, Patacchioli FR, Antonini G, Sepe MM, Tisei P, Bastianello S, Monnazzi P, Angelucci L. Altered circadian cortisol secretion in Alzheimer’s Disease: Clinical and neuroradiological aspects. J Neurosci Res. 2001;66:262–5.

    Article  CAS  PubMed  Google Scholar 

  93. Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci. 2005;22:3129–36.

    Article  PubMed  Google Scholar 

  94. Turner PL, Mainster MA. Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol. 2008;92:1439–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Monteleone P, Maj M. The circadian basis of mood disorders: recent developments and treatment implications. Eur Neuropsychopharmacol. 2008;18:701–11.

    Article  CAS  PubMed  Google Scholar 

  96. Wirz-Justice A. Diurnal variations of depressive symptoms. Dialogues Clin Neurosci. 2008;10:337–43.

    PubMed Central  PubMed  Google Scholar 

  97. Pail G, Huf W, Pjrek E, Winkler D, Willeit M, Praschak-Rieder N, Kasper S. Bright-light therapy in the treatment of mood disorders. Neuropsychobiology. 2011;64:152–62.

    Article  CAS  PubMed  Google Scholar 

  98. van Wamelen DJ, Aziz NA, Anink JJ, van Steenhoven R, Angeloni D, Fraschini F, Jockers R, Roos RA, Swaab DF. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington’s Disease. Sleep. 2013;36:117–25.

    PubMed Central  PubMed  Google Scholar 

  99. Morton AJ, Wood NI, Hastings MH, Hurelbrink C, Barker RA, Maywood ES. Disintegration of the sleep-wake cycle and circadian timing in Huntington’s disease. J Neurosci. 2005;25:157–63.

    Article  CAS  PubMed  Google Scholar 

  100. Fahrenkrug J, Popovic N, Georg B, Brundin P, Hannibal J. Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington’s disease mouse. J Mol Neurosci. 2007;31:139–48.

    CAS  PubMed  Google Scholar 

  101. Bellugi U, Lichtenberger L, Mills D, Galaburda A, Korenberg JR. Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends Neurosci. 1999;22:197–207.

    Article  CAS  PubMed  Google Scholar 

  102. Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, MacDonald JF, Wang JY, Falls DL, Jia Z. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron. 2002;35:121–33.

    Article  CAS  PubMed  Google Scholar 

  103. Williams SR, Zies D, Mullegama SV, Grotewiel MS, Elsea SH. Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. Am J Hum Genet. 2012;90:941–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Disclosures/Conflicts

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cecilia Anzulovich-Miranda Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anzulovich-Miranda, A.C. (2015). Circadian Synchronization of Cognitive Functions. In: Gargiulo, P., Arroyo, H. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-319-17103-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17103-6_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17102-9

  • Online ISBN: 978-3-319-17103-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics