Skip to main content

Polybenzimidazole/Porous Poly(tetrafluoro ethylene) Composite Membranes

  • Chapter
High Temperature Polymer Electrolyte Membrane Fuel Cells

Abstract

One of the important factors that determine the polymer electrolyte membrane fuel cell (PEMFC) performance is the efficiency of proton transfer across the proton exchange membrane (PEM) from the anode to the cathode. A PEM with a lower thickness (L) and higher conductivity (σ) has a lower resistance (L/σ) and thus higher proton transport efficiency. However, a thin PEM may be mechanically weak and exhibit high gas crossover which lowers the open circuit voltage. Thus obtaining a PEM with low thickness and high mechanical strength without increasing the gas crossover rate or reducing the proton conductivity is important for obtaining a high performance PEMFC. The composite membranes fabricated using a high mechanical strength porous thin film such as porous poly(tetrafluoro ethylene) (PTFE) as a supporting material for reinforcement has been demonstrated as an effective approach to reach those targets for proton conducting membranes based on Nafion or polybenzimidazole (PBI) doped with H3PO4. In this chapter, we first briefly describe the current status of the Nafion/PTFE composite membranes and then report the PBI/PTFE composite membrane preparations, characterizations, and their application in high temperature PEMFCs (operating at 120–200 °C). Some new polyelectrolyte/fiber reinforced composite membranes for high temperature PEMFC applications such as PBI reinforced with phosphoric acid compatible crosslinked PBI-polybenzoxazine nano-fiber and highly conducting polyelectrolytes (i.e., quaternized polysulfone and poly(ether sulfone)/poly(vinyl pyrrolidone) blend) reinforced with porous PTFE are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ukihashi H, Asawa T, Gunjima T (1980) Cation exchange membrane of fluorinated polymer containing polytetrafluoroethylene fibrils for electrolysis and preparation thereof. US Patent 4,218,542

    Google Scholar 

  2. Penner RM, Martin CR (1985) Ion-transporting composite membranes. I. Nafion-impregnated Gore-Tex membranes. J Electrochem Soc 132:514–515

    Article  Google Scholar 

  3. Liu C, Martin CR (1990) Ion-transporting composite membranes. II. Ion transport mechanism in Nafion-impregnated Gore-Tex membranes. J Electrochem Soc 137:510–517

    Article  Google Scholar 

  4. Bahar B, Hobson AR, Kolde JA (1996) Ultra-thin film integral composite membrane. US Patent 5,547,551

    Google Scholar 

  5. Kolde JA, Bahar B, Wilson MS et al (1995) Advanced composite polymer electrolyte fuel cell membranes. Proceedings of the first international symposium on proton conducting membrane fuel cells I. Electrochem Soc Proc 95–23:193–201

    Google Scholar 

  6. Liu F, Yi B, Xing D et al (2003) Nafion/PTFE composite membranes for fuel cell applications. J Membr Sci 212:213–223

    Article  Google Scholar 

  7. Lin HL, Yu TL, Shen KS et al (2004) Effect of Triton-X on the preparation of Nafion/PTFE composite membranes. J Membr Sci 237:1–7

    Article  Google Scholar 

  8. Yu TL, Lin HL, Shen KS et al (2004) Nafion/PTFE composite membranes for fuel cell applications. J Polym Res 11:217–224

    Article  Google Scholar 

  9. Lin HL, Yu TL, Huang LN (2005) Nafion/PTFE composite membranes for direct methanol fuel cell applications. J Power Sources 150:11–19

    Article  Google Scholar 

  10. Huang LN, Chen LC, Yu TL et al (2006) Nafion/PTFE/silicate composite membranes for direct methanol fuel cells. J Power Sources 161:1096–1105

    Article  Google Scholar 

  11. Wang L, Xing DM, Liu YH et al (2006) Pt/SiO2 catalyst as an addition to Nafion/PTFE self-humidifying composite membrane. J Power Sources 161:61–67

    Article  Google Scholar 

  12. Zhang Y, Zhang H, Zhu X et al (2007) Fabrication and characterization of a PTFE-reinforced integral composite membrane for self-humidified PEMFC. J Power Sources 165:786–792

    Article  Google Scholar 

  13. Tang H, Pan M, Jiang SP et al (2007) Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells. Electrochim Acta 52:5304–5311

    Article  Google Scholar 

  14. Lin HL, Chang TJ (2008) Preparation of Nafion/PTFE/Zr(HPO4)2 composite membranes by direct impregnation. J Membr Sci 325:880–886

    Article  Google Scholar 

  15. Chen LC, Yu TL, Lin HL et al (2008) Nafion/PTFE and zirconium phosphate modified Nafion/PTFE composite membranes for direct methanol fuel cells. J Membr Sci 307:10–20

    Article  Google Scholar 

  16. Lin HL, Yeh SH, Yu TL et al (2009) Silicate and zirconium phosphate modified Nafion/PTFE composite membranes for high temperature PEMFC. J Polym Res 16:519–527

    Article  Google Scholar 

  17. Jung GB, Weng FB, Su A et al (2008) Nafion/PTFE/silicate membranes for high-temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 33:2413–2417

    Article  Google Scholar 

  18. Jao TC, Ke ST, Chi PH et al (2010) Degradation on a PTFE/Nafion membrane electrode assembly with accelerating degradation technique. Int J Hydrogen Energy 35:6941–6949

    Article  Google Scholar 

  19. Yang L, Li H, Ai F et al (2013) A new method to prepare high performance fluorinated sulfonic acid ionomer/porous expanded polytetrafluoroethylene composite membranes based on perfluorinated sulfonyl fluoride polymer solution. J Power Sources 243:392–396

    Article  Google Scholar 

  20. Xing D, He G, Hou Z et al (2013) Properties and morphology of Nafion/polytetrafluoroethylene composite membrane fabricated by a solution-spray process. Int J Hydrogen Energy 38:8400–8408

    Article  Google Scholar 

  21. Hakan Yildrim M, Stamatialis D, Wessling M (2008) Dimensionally stable Nafion-polyethylene composite membranes for direct methanol fuel cell applications. J Membr Sci 321:364–372

    Article  Google Scholar 

  22. Cho MS, Son HD, Nam JD et al (2006) Proton conducting membrane using multi-layer acid-base complex formation on porous PE film. J Membr Sci 284:155–160

    Article  Google Scholar 

  23. Choi SW, Fu YZ, Ahn YR et al (2008) Nafion-impregnated electrospun polyvinylidene fluoride composite membrane for direct methanol fuel cells. J Power Sources 180:167–171

    Article  Google Scholar 

  24. Jang WG, Hou J, Byun HS (2011) Preparation and characterization of PVdF nanofiber ion exchange membrane for the PEMFC application. Desalin Water Treat 34:315–320

    Article  Google Scholar 

  25. Wei X, Yates MZ (2010) Control of Nafion/poly(vinylidene fluoride-co-hexafluoropropylene) composite membrane microstructure to improve performance in direct methanol fuel cells. J Electrochem Soc 157:B522–B528

    Article  Google Scholar 

  26. Lin HL, Wang SH, Chiu CK et al (2010) Preparation of Nafion/poly(vinyl alcohol) electro-spun fiber composite membranes for direct methanol fuel cells. J Membr Sci 365:14–122

    Article  Google Scholar 

  27. Molla S, Compan V, Lafuente SL (2011) On the methanol permeability through pristine nafion and PVA membranes measured by different techniques. A comparison of methodologies. Fuel Cells 11:897–906

    Article  Google Scholar 

  28. Molla S, Compan V, Gimenez E et al (2011) Novel ultrathin composite membranes of Nafion/PVA for PEMFCs. Int J Hydrogen Energy 36:11025–11033

    Article  Google Scholar 

  29. Molla S, Compan V (2011) Polyvinyl alcohol nanofiber reinforced nafion membranes for fuel cell applications. J Membr Sci 372:191–200

    Article  Google Scholar 

  30. Molla S, Compan V (2011) Performance of composite Nafion/PVA membranes for direct methanol fuel cells. J Power Sources 196:2699–2708

    Article  Google Scholar 

  31. Lin HL, Wang SH (2014) Nafion/poly(vinyl alcohol) nano-fiber composite and Nafion/poly(vinylalcohol) blend membranes for direct methanol fuel cells. J Membr Sci 452:253–262

    Article  Google Scholar 

  32. Shao ZG, Wang X, Hsing IM (2002) Composite Nafion/poly(vinyl alcohol) membranes for direct methanol fuel cell. J Membr Sci 210:147–153

    Article  Google Scholar 

  33. Xu W, Liu C, Xue X et al (2004) New proton exchange membranes based on poly(vinyl alcohol) for DMFCs. Solid State Ion 171:121–127

    Article  Google Scholar 

  34. DeLuca NW, Elabd YA (2006) Nafion/poly(vinyl alcohol) blends: effect of composition and annealing temperature on transport properties. J Membr Sci 282:217–224

    Article  Google Scholar 

  35. DeLuca NW, Elabd YA (2006) Direct methanol fuel cell performance of Nafion/poly(vinyl alcohol) blend membranes. J Power Sources 163:386–391

    Article  Google Scholar 

  36. Lin HL, Chen YC, Li CC et al (2008) Preparation of PBI/PTFE composite membranes from PBI in N,N′-dimethyl acetamide solutions with various concentrations of LiCl. J Power Sources 181:228–236

    Article  Google Scholar 

  37. Ma YL, Wainright JS, Litt M et al (2004) Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 151:A8–A16

    Article  Google Scholar 

  38. Li Q, Hjuler HA, Bjerrum NJ (2001) Phosphoric acid doped polybenzimidazole membranes: physiochemical characterization and fuel cell applications. J Appl Electrochem 31:773–779

    Article  Google Scholar 

  39. Conciatori AB, Smart CL (1970) Production of shaped PBI articles. US Patent 3,502,606

    Google Scholar 

  40. Samms SR, Wasmus S, Savinell RF (1996) Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J Electrochem Soc 143:1225–1232

    Article  Google Scholar 

  41. Li Q, He R, Jensen JO et al (2004) PBI-based polymer membranes for high temperature fuel cells—preparation, characterization and fuel cell demonstration. Fuel Cells 4:147–159

    Article  Google Scholar 

  42. Lobato J, Cañizares P, Rodrigo MA et al (2006) Synthesis and characterization of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. J Membr Sci 280:351–362

    Article  Google Scholar 

  43. Kim TH, Lim TW, Lee JC (2007) High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting. J Power Sources 172:172–179

    Article  Google Scholar 

  44. Kojima T, Yokota R, Kochi M et al (1980) Dilute solution properties of a polybenzimidazole. J Polym Sci Part B 18:1673–1684

    Google Scholar 

  45. Kojima T (1980) Studies of molecular aggregation of a polybenzimidazole in solution by fluorescence spectroscopy. J Polym Sci Part B 18:1685–1695

    Google Scholar 

  46. Shogbon CB, Brousseau JL, Zhang H et al (2006) Determination of the molecular parameters and studies of the chain conformation of polybenzimidazole in DMAc/LiCl. Macromolecules 29:9409–9418

    Article  Google Scholar 

  47. Hara M (1993) Polyelectrolyte in nonaqueous solution. In: Hara M (ed) Polyelectrolytes—science and technology. Marcel Dekker, New York (Chap. 4)

    Google Scholar 

  48. Dautzenberg H, Jaeger W, Kotz J et al (1994) Polyelectrolytes—formation, characterization and application. Hanser, Munich (Chap. 5)

    Google Scholar 

  49. Li M, Scott K (2010) A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications. Electrochim Acta 55:2123–2128

    Article  Google Scholar 

  50. Lin HL, Yu TL, Chang WK et al (2007) Preparation of a low proton resistance PBI/PTFE composite membrane. J Power Sources 164:481–487

    Article  Google Scholar 

  51. Lin HL, Hsieh YS, Chiu CW et al (2009) Durability and stability test of proton exchange membrane fuel cells prepared from PBI/PTFE composite membrane. J Power Sources 193:170–174

    Article  Google Scholar 

  52. Yu TL, Lin HL (2009) Preparation of PBI/H3PO4-PTFE composite membranes for high temperature fuel cells. Open Fuels Ener Sci J 2:129–135

    Article  MathSciNet  Google Scholar 

  53. Lin HL, Huang JR, Chen YT et al (2012) Polybenzimidazole/poly(tetrafluoro ethylene) composite membranes for high temperature proton exchange membrane fuel cells. J Polym Res 19:9875–9878

    Article  Google Scholar 

  54. Su H, Pasupathi S, Bladergoen B et al (2013) Optimization of gas diffusion electrodes for polybenzimidazole-based high temperature proton exchange membrane fuel cell: evaluation of polymer binders in catalyst layer. Int J Hydrogen Energy 38:11370–11378

    Article  Google Scholar 

  55. Mazur P, Soukup J, Paidar M et al (2011) Gas diffusion electrodes for high temperature PEM-type fuel cells: role of a polymer binder and method of the catalyst layer deposition. J Appl Electrochem 41:1013–1019

    Article  Google Scholar 

  56. Lobato J, Cañizares P, Rodrigo MA et al (2010) Study of the influence of the amount of PBI-H3PO4 in the catalyst layer of a high temperature PEMFC. Int J Hydrogen Energy 35:2513–2530

    Google Scholar 

  57. Mamlouk M, Scott K (2010) The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell. Int J Hydrogen Energy 35:784–793

    Article  Google Scholar 

  58. Matar S, Higer A, Liu H (2010) The effects of excess phosphoric acid in a polybenzimidazole-based high temperature proton exchange membrane fuel cell. J Power Sources 195:12–15

    Article  Google Scholar 

  59. Su PH, Lin HL, Lin YP et al (2013) High temperature membrane electrode assembly catalyst layer preparation using various molecular weight polybenzimidazole binders. Int J Hydrogen Energy 38:13742–13753

    Article  Google Scholar 

  60. Su PH, Cheng J, Li JF et al (2014) High temperature polybenzimidazole membrane electrode assemblies using pyridine-polybenzimizazole as catalyst layer binder. J Power Sources 260:131–139

    Article  Google Scholar 

  61. Hu J, Zhang H, Zhai Y et al (2006) 500 h continuous aging life test on PBI/H3PO4 high-temperature PEMFC. Int J Hydrogen Energy 31:1855–1862

    Article  Google Scholar 

  62. Xiao L, Zhang H, Scanlon E et al (2005) High-temperature polybenzimidazole fuel cell membranes via a sol-gel process. Chem Mater 17:5328–5333

    Article  Google Scholar 

  63. Liu G, Zhang H, Hu J et al (2006) Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI. J Power Sources 162:547–552

    Article  Google Scholar 

  64. Zhai Y, Zhang H, Liu G et al (2007) Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test. J Electrochem Soc 154:B72–B76

    Article  Google Scholar 

  65. Schmidt T, Baurmeister J (2008) Properties of high-temperature PEMFC Celtec-P 1000 MEAs in start/stop operation mode. J Power Sources 176:428–434

    Article  Google Scholar 

  66. Li Q, Jensen JO, Savinell RF et al (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477

    Article  Google Scholar 

  67. Boaventura M, Mendoes A (2010) Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes. Int J Hydrogen Energy 35:11649–11660

    Article  Google Scholar 

  68. Li HY, Liu YL (2013) Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells. J Mat Chem A 1:1171–1178

    Article  Google Scholar 

  69. Li M, Scott K (2011) A polytetrafluoroethylene/quaternized polysulfone membrane for high temperature polymer electrolyte membrane fuel cells. J Power Sources 196:1894–1898

    Article  Google Scholar 

  70. Li M, Scott K, Wu X (2009) A poly(R1R2R3-N+)/H3PO4 composite membrane for phosphoric acid polymer electrolyte membrane fuel cells. J Power Sources 194:811–814

    Article  Google Scholar 

  71. Lu S, Xiu R, Xu X et al (2014) Polytetrafluoroethylene (PTFE) reinforced poly(ether sulfone)-poly(vinyl pyrrolidone) composite membrane for high temperature fuel cells. J Membr Sci 464:1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Leon Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yu, T.L. (2016). Polybenzimidazole/Porous Poly(tetrafluoro ethylene) Composite Membranes. In: Li, Q., Aili, D., Hjuler, H., Jensen, J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-17082-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17082-4_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17081-7

  • Online ISBN: 978-3-319-17082-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics