Skip to main content

Wrapping Drug Combinations for Therapeutic Editing of Side Effects: Systems Biology Meets Wrapping Technology

  • Chapter
  • First Online:
Biomolecular Interfaces

Abstract

Wrapping designs have limitations arising from similarities in the biomolecular interfaces of on-target and off-target homologous proteins and also from the highly diverse cellular contexts wherein a protein may constitute a desirable or undesirable target. While dehydron wrapping enables the control of specificity, it may not be able to exclude every single toxicity-related target, especially if the latter shares with the therapeutically relevant targets a similar dehydron pattern in the drug-binding region. In such circumstances, we may need to resort to a multicomponent therapy where one drug acts synergistically with the other while selectively antagonizing it in the specific cellular context where the action of the first drug promotes toxicity. This chapter explores these a-priori therapeutic possibilities. As previously described, due to their ability to interfere with signal transduction events controlling cell proliferation and fate, kinase inhibitors hold promise as anticancer agents. Nevertheless, the functional role of a kinase depends on the cellular context and hence kinase inhibition in an off-target cell may lead to undesired side effects. Motivated by these observations, we explore a mode of “therapeutic editing” where one drug—the editor—suppresses the side effect promoted by the primary drug as it impacts off-target cells. Editor and primary drug have overlapping therapeutic impact, while the editor suppresses the downstream propagation of toxicity-related signaling triggered by the primary drug in an off-target cellular context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Widakowich C, de Castro G, de Azambuja E, Dinh P, Awada A (2007) Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12:1443–1455

    Article  CAS  PubMed  Google Scholar 

  2. Schmidinger M, Zielinski CC, Vogl UM et al (2008) Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 26:5204–5212

    Article  PubMed  Google Scholar 

  3. Lacouture ME (2006) Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer 6:803–812

    Article  CAS  PubMed  Google Scholar 

  4. Verheul HM, Pinedo HM (2007) Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 7:475–485

    Article  CAS  PubMed  Google Scholar 

  5. Force T, Krause D, van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7:332–344

    Article  CAS  PubMed  Google Scholar 

  6. Force T, Kerkela R (2008) Cardiotoxicity of the new cancer therapeutics—mechanisms of, and approaches to, the problem. Drug Discov Today 13:778–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kerkela R, Grazette L, Yacobi R et al (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12:908–916

    Article  PubMed  Google Scholar 

  8. Chu TF, Rupnick MA, Kerkela R et al (2007) Cardiotoxicity associated with tyrosine kinase inhibitor sunitnib. Lancet 370:2011–2019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fernández A, Crespo A, Tiwari A (2009) Is there a case for selectively promiscuous anticancer drugs? Drug Discov Today 14:1–5

    Article  PubMed  Google Scholar 

  10. Zhang X, Crespo A, Fernández A (2008) Turning promiscuous kinase inhibitors into safer drugs. Trends Biotech 26:295–301

    Article  Google Scholar 

  11. Dancey J, Sausville EA (2003) Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov 2:296–313

    Article  CAS  PubMed  Google Scholar 

  12. Levitzki A, Gazit A (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267:1782–1788

    Article  CAS  PubMed  Google Scholar 

  13. Fernández A, Sanguino A, Peng Z, Ozturk E, Chen J, Crespo A, Wulf S, Shavrin A, Qin C, Ma J, Trent J, Lin Y, Han HD, Mangala LS, Bankson JA, Gelovani J, Samarel A, Bornmann W, Sood AK, Lopez-Berestein G (2007) An anticancer c-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest 117:4044–4054

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6:202–209

    Article  CAS  PubMed  Google Scholar 

  15. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    Article  CAS  Google Scholar 

  16. Langer R (2001) Drug delivery: drugs on target. Science 293:58–59

    Article  CAS  PubMed  Google Scholar 

  17. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  CAS  PubMed  Google Scholar 

  18. Deninger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:2640–2653

    Article  Google Scholar 

  19. Dancey JE, Chen HX (2006) Strategies for optimizing combinations of molecularly targeted anticancer drugs. Nat Rev Drug Discov 5:649–659

    Article  CAS  PubMed  Google Scholar 

  20. Keith CT, Borisky AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78

    Article  CAS  PubMed  Google Scholar 

  21. Zimmermann GR, Lehar J, Keith CT (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12:34–42

    Article  CAS  PubMed  Google Scholar 

  22. Verweij J, Casali P, Kotasek D et al (2007) Imatinib does not induce cardiac left ventricular failure in gastrointestinal stromal tumours patients: analysis of EORTC-ISG-AGITG study 62005. Eur J Cancer 43:974–978

    Article  CAS  PubMed  Google Scholar 

  23. Atallah E, Durand JB, Kantarjian H, Cortes J (2007) Congestive heart failure is a rare event in patients receiving imatinib. Blood 110:1233–1237

    Article  CAS  PubMed  Google Scholar 

  24. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  CAS  PubMed  Google Scholar 

  25. O’Neill E, Rushworth L, Baccarini M, Kolch W (2004) Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product raf-1. Science 306:2267–2270

    Article  PubMed  Google Scholar 

  26. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    Article  CAS  PubMed  Google Scholar 

  27. Chen J, Zhang X, Fernández A (2007) Molecular basis for specificity in the druggable kinome: sequence-based analysis. Bioinformatics 23:563–572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Faivre S, Demetri G, Sargent W, Raymond E (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6:734–745

    Article  CAS  PubMed  Google Scholar 

  29. O’Neill EE, Matallanas D, Kolch W (2005) Mammalian sterile 20-like kinases in tumor suppression: an emerging pathway. Cancer Res 65:5485–5487

    Article  PubMed  Google Scholar 

  30. Karaman MW, Herrgard S, Treiber DK et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotech 26:127–132

    Article  CAS  Google Scholar 

  31. Kantarjian H, Jabbour E, Grimley J, Kirkpatrick P (2006) Dasatinib. Nat Rev Drug Discov 5:717–718

    Article  CAS  PubMed  Google Scholar 

  32. Fernández A, Sessel S (2009) Selective antagonism of anticancer drugs for side effect removal. Trends Pharmacol Sci 30:403–410

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Fernández Stigliano .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández Stigliano, A. (2015). Wrapping Drug Combinations for Therapeutic Editing of Side Effects: Systems Biology Meets Wrapping Technology. In: Biomolecular Interfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-16850-0_12

Download citation

Publish with us

Policies and ethics