Skip to main content

Blur-Resilient Tracking Using Group Sparsity

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Included in the following conference series:

Abstract

In this paper, a Blur Resilient target Tracking algorithm (BReT) is developed by modeling target appearance with a groupwise sparse approximation over a template set. Since blur templates of different directions are added to the template set to accommodate motion blur, there is a natural group structure among the templates. In order to enforce the solution of the sparse approximation problem to have group structure, we employ the mixed \(\ell _1+\ell _1/\ell _2\) norm to regularize the model coefficients. Having observed the similarity of gradient distributions in the blur templates of the same direction, we further boost the tracking robustness by including gradient histograms in the appearance model. Then, we use an accelerated proximal gradient scheme to develop an efficient algorithm for the non-smooth optimization resulted from the representation. After that, blur estimation is performed by investigating the energy of the coefficients, and when the estimated target can be well approximated by the normal templates, we dynamically update the template set to reduce the drifting problem. Experimental results show that the proposed BReT algorithm outperforms state-of-the-art trackers on blurred sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.dabi.temple.edu/~hbling/data/TUblur.zip.

  2. 2.

    http://cvlab.hanyang.ac.kr/tracker_benchmark/seq/Jumping.zip.

References

  1. Silveira, G.F., Malis, E.: Real-time visual tracking under arbitrary illumination changes. In: CVPR (2007)

    Google Scholar 

  2. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR (2006)

    Google Scholar 

  3. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR (2012)

    Google Scholar 

  4. Hu, W., Li, X., Zhang, X., Shi, X., Maybank, S.J., Zhang, Z.: Incremental tensor subspace learning and its applications toforeground segmentation and tracking. IJCV 91, 303–327 (2011)

    Article  MATH  Google Scholar 

  5. Kwon, J., Lee, K.M.: Wang-landau monte carlo-based tracking methods for abrupt motions. PAMI 35, 1011–1024 (2013)

    Article  Google Scholar 

  6. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28, 145:1–145:8 (2009)

    Article  Google Scholar 

  7. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: CVPR (2013)

    Google Scholar 

  8. Jin, H., Favaro, P., Cipolla, R.: Visual tracking in the presence of motion blur. In: CVPR (2005)

    Google Scholar 

  9. Dai, S., Yang, M., Wu, Y., Katsaggelos, A.K.: Tracking motion-blurred targets in video. In: ICIP (2006)

    Google Scholar 

  10. Wu, Y., Ling, H., Yu, J., Li, F., Mei, X., Cheng, E.: Blurred target tracking by blur-driven tracker. In: ICCV (2011)

    Google Scholar 

  11. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Convex optimization with sparsity-inducing norms. In: Sra, S., Nowozin, S., Wright, S. (eds.) Optimization for Machine Learning, pp. 19–53. MIT Press, Cambridge (2011)

    Google Scholar 

  12. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 13 (2006)

    Article  Google Scholar 

  13. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)

    Google Scholar 

  14. Pang, Y., Ling, H.: Finding the best from the second bests-inhibiting subjective bias in evaluation of visual tracking algorithms. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2784–2791 (2013)

    Google Scholar 

  15. Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F., Khajenezhad, A., Salahledin, A., Soltani-Farani, A., Zarezade, A., Petrosino, A., et al.: The visual object tracking vot2013 challenge results. In: IEEE Workshop on visual object tracking challenge (2013)

    Google Scholar 

  16. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1428–1441 (2014)

    Article  Google Scholar 

  17. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC (2006)

    Google Scholar 

  18. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. PAMI 33, 1619–1632 (2011)

    Article  Google Scholar 

  20. Hare, S., Saffari, A., Torr, P.H.S.: Struck: structured output tracking with kernels. In: ICCV (2011)

    Google Scholar 

  21. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25, 564–577 (2003)

    Article  Google Scholar 

  22. Black, M.J., Jepson, A.D.: Eigentracking: robust matching and tracking of articulated objects using a view-based representation. IJCV 26, 63–84 (1998)

    Article  Google Scholar 

  23. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. IJCV 77, 125–141 (2008)

    Article  Google Scholar 

  24. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR (2010)

    Google Scholar 

  25. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. PAMI 33, 2259–2272 (2011)

    Article  Google Scholar 

  26. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: CVPR (2012)

    Google Scholar 

  27. Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., Kulikowski, C.: Robust and fast collaborative tracking with two stage sparse optimization. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 624–637. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via structured multi-task sparse learning. IJCV 101, 367–383 (2013)

    Article  MathSciNet  Google Scholar 

  29. Doucet, A., De Freitas, N., Gordon, N., et al.: An introduction to sequential Monte Carlo methods. In: Doucet, A., De Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science, vol. 1, pp. 3–14. Springer, New York (2001)

    Chapter  Google Scholar 

  30. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Liu, J., Ye, J.: Moreau-Yosida regularization for grouped tree structure learning. In: NIPS (2010)

    Google Scholar 

  32. Liu, J., Ji, S., Ye, J.: SLEP: Sparse Learning with Efficient Projections. Arizona State University (2009)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the US NSF Grants IIS-1218156 and IIS-1350521. Wu was supported in part by NSFC under Grants 61005027 and 61370036, and Lang was supported by “Beijing Higher Education Young Elite Teacher Project” (No.YETP0514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengpeng Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liang, P. et al. (2015). Blur-Resilient Tracking Using Group Sparsity. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics