Skip to main content

Qualitative and Quantitative Spatio-temporal Relations in Daily Living Activity Recognition

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Included in the following conference series:

Abstract

For the effective operation of intelligent assistive systems working in real-world human environments, it is important to be able to recognise human activities and their intentions. In this paper we propose a novel approach to activity recognition from visual data. Our approach is based on qualitative and quantitative spatio-temporal features which encode the interactions between human subjects and objects in an efficient manner. Unlike the state of the art, our approach uses significantly fewer assumptions and does not require knowledge about object types, their affordances, or the sub-level activities that high-level activities consist of. We perform an automatic feature selection process which provides the most representative descriptions of the learnt activities. We validated the method using these descriptions on the CAD-120 benchmark dataset, consisting of video sequences showing humans performing daily real-world activities. The method is shown to outperform state of the art benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CAD-120: http://pr.cs.cornell.edu/humanactivities/data.php.

  2. 2.

    http://www.oxforddictionaries.com.

  3. 3.

    Note that this is similar to the INDU calculus [34] which extends the interval calculus by discretising whether intervals in a before, meets or overlaps relationship are shorter, equal or longer than each other.

  4. 4.

    http://pr.cs.cornell.edu/humanactivities/data.php.

References

  1. Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circ. Syst. Video Technol. 18, 1473–1488 (2008)

    Article  Google Scholar 

  2. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28, 976–990 (2010)

    Article  Google Scholar 

  3. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation, segmentation and recognition. Comput. Vis. Image Underst. 115, 224–241 (2011)

    Article  Google Scholar 

  4. Xu, X., Tang, J., Zhang, X., Liu, X., Zhang, H., Qiu, Y.: Exploring techniques for vision based human activity recognition: methods, systems, and evaluation. Sensors 13, 1635–1650 (2013). Basel, Switzerland

    Article  Google Scholar 

  5. Collins, R., Lipton, A., Kanade, T.: Introduction to the special section on video surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 22, 745–746 (2000)

    Article  Google Scholar 

  6. Gowsikhaa, D., Abirami, S., Baskaran, R.: Automated human behavior analysis from surveillance videos: a survey. Artif. Intell. Rev., 1–19 (2012)

    Google Scholar 

  7. Ko, T.: A survey on behavior analysis in video surveillance for homeland security applications. In: 2008 37th IEEE Applied Imagery Pattern Recognition Workshop, pp. 1–8 IEEE (2008)

    Google Scholar 

  8. Chen, J., Cohn, A.G., Liu, D., Wang, S., Ouyang, J., Yu, Q.: A survey of qualitative spatial representations. Knowl. Eng. Rev. FirstView, 1–31 (2013)

    Google Scholar 

  9. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64, 107–123 (2005)

    Article  Google Scholar 

  10. Koppula, H., Saxena, A.: Learning spatio-temporal structure from RGB-D videos for human activity detection and anticipation. In: Proceedings of the International Conference on Machine Learning (ICML) (2013)

    Google Scholar 

  11. Koppula, H., Gupta, R., Saxena, A.: Learning human activities and object affordances from RGB-D videos. Int. J. Robot. Res. 32, 951–970 (2013)

    Article  Google Scholar 

  12. Sridhar, M., Cohn, A.G., Hogg, D.C.: Learning functional object-categories from a relational spatio-temporal representation. In: European Conference on Artificial Intelligence (2008)

    Google Scholar 

  13. Sridhar, M., Cohn, A.G., Hogg, D.C.: Unsupervised learning of event classes from video. In: AAAI (2010)

    Google Scholar 

  14. Sridhar, M., Cohn, A.G., Hogg, D.C.: Discovering an event taxonomy from video using qualitative spatio-temporal graphs. In: European Conference on Artificial Intelligence (2010)

    Google Scholar 

  15. Randell, D., Zhan, C., Cohn, A.G.: A spatial logic based on regions and connection. In: Third International Conference on Knowledge Representation and Reasoning (1992)

    Google Scholar 

  16. Cohn, A.G., Hazarika, S.: Qualitative spatial representation and reasoning: an overview. Fundamenta Informaticae 46, 1–29 (2001)

    MATH  MathSciNet  Google Scholar 

  17. Cohn, A.G., Renz, J.: Qualitative spatial representation and reasoning. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 551–596. Elsevier B.V, Amsterdam (2008)

    Chapter  Google Scholar 

  18. Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843 (1983)

    Article  MATH  Google Scholar 

  19. Dubba, K., Cohn, A.G., Hogg, D.C.: Event model learning from complex videos using ILP. In: European Conference on Artificial Intelligence, pp. 93–98 (2010)

    Google Scholar 

  20. Galata, A., Johnson, N., Hogg, D.: Learning behaviour models of human activities. In: British Machine Vision Conference (1999)

    Google Scholar 

  21. Galata, A., Johnson, N., Hogg, D.: Learning variable-length markov models of behavior. Comput. Vis. Image Underst. 81, 398–413 (2001)

    Article  MATH  Google Scholar 

  22. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72. IEEE (2005)

    Google Scholar 

  23. Xia, L., Aggarwal, J.: Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2834–2841. IEEE (2013)

    Google Scholar 

  24. Zhang, H., Parker, L.: 4-dimensional local spatio-temporal features for human activity recognition. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2044–2049. IEEE (2011)

    Google Scholar 

  25. Forbus, K.: Qualitative modeling. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 361–393. Elsevier B.V, Amsterdam (2008)

    Chapter  Google Scholar 

  26. Zhang, Y., Liu, X., Chang, M.-C., Ge, W., Chen, T.: Spatio-temporal phrases for activity recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 707–721. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-temporal features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 140–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Chen, B., Ting, J.A., Marlin, B., de Freitas, N.: Deep learning of invariant spatio-temporal features from video. In: NIPS 2010 Deep Learning and Unsupervised Feature Learning Workshop (2010)

    Google Scholar 

  29. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: CVPR 2011, pp. 3361–3368. IEEE (2011)

    Google Scholar 

  30. Ryoo, M.S., Aggarwal, J.: Spatio-temporal relationship match: video structure comparison for recognition of complex human activities. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1593–1600 (2009)

    Google Scholar 

  31. Brendel, W., Todorovic, S.: Learning spatiotemporal graphs of human activities. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011. IEEE Computer Society (2011)

    Google Scholar 

  32. Rybok, L., Schauerte, B., Al-Halah, Z., Stiefelhagen, R.: “Important Stuff, Everywhere!” activity recognition with salient proto-objects as context. In: IEEE Winter Conference on Applications of Computer Vision (WACV) (2014)

    Google Scholar 

  33. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005)

    Article  Google Scholar 

  34. Pujari, A., Vijaya Kumari, G., Sattar, A.: INDu: an interval & duration network. In: Foo, N. (ed) AI 1999. LNCS, vol. 1747, pp. 291–303. Springer, Heidelberg (1999)

    Google Scholar 

  35. Behera, A., Hogg, D.C., Cohn, A.G.: Egocentric activity monitoring and recovery. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 519–532. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  36. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Tech. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

The financial support of RACE (FP7-ICT-287752) and STRANDS (FP7-ICT-600623) projects is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad Tayyub .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (zip 2,507 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tayyub, J., Tavanai, A., Gatsoulis, Y., Cohn, A.G., Hogg, D.C. (2015). Qualitative and Quantitative Spatio-temporal Relations in Daily Living Activity Recognition. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics