Skip to main content

Local Generic Representation for Face Recognition with Single Sample per Person

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9005))

Included in the following conference series:

Abstract

Face recognition with single sample per person (SSPP) is a very challenging task because in such a scenario it is difficult to predict the facial variations of a query sample by the gallery samples. Considering the fact that different parts of human faces have different importance to face recognition, and the fact that the intra-class facial variations can be shared across different subjects, we propose a local generic representation (LGR) based framework for face recognition with SSPP. A local gallery dictionary is built by extracting the neighboring patches from the gallery dataset, while an intra-class variation dictionary is built by using an external generic dataset to predict the possible facial variations (e.g., illuminations, pose, expressions and disguises). LGR minimizes the total representation residual of the query sample over the local gallery dictionary and the generic variation dictionary, and it uses correntropy to measure the representation residual of each patch. Half-quadratic analysis is adopted to solve the optimization problem. LGR takes the advantages of patch based local representation and generic variation representation, showing leading performance in face recognition with SSPP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, A.K., Li, S.Z.: Handbook of Face Recognition. Springer, London (2005)

    MATH  Google Scholar 

  2. Tan, X., Chen, S., Zhou, Z.H., Zhang, F.: Face recognition from a single image per person: a survey. Pattern Recogn. 39, 1725–1745 (2006)

    Article  MATH  Google Scholar 

  3. Yang, M., Gool, L.V., Zhang, L.: Sparse variation dictionary learning for face recognition with a single training sample per person. In: Proceedings of the 14th IEEE International Conference on Computer Vision (ICCV) (2013) (in press)

    Google Scholar 

  4. Martínez, A.M.: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans. Pattern Anal. Mach. Intell. 24, 748–763 (2002)

    Article  Google Scholar 

  5. Shan, S., Cao, B., Gao, W., Zhao, D.: Extended fisherface for face recognition from a single example image per person. In: IEEE International Symposium on Circuits and Systems, ISCAS 2002, vol. 2., pp. II–81. IEEE (2002)

    Google Scholar 

  6. Gao, Q.X., Zhang, L., Zhang, D.: Face recognition using FLDA with single training image per person. Appl. Math. Comput. 205, 726–734 (2008)

    Article  MATH  Google Scholar 

  7. Vetter, T.: Synthesis of novel views from a single face image. Int. J. Comput. Vis. 28, 103–116 (1998)

    Article  Google Scholar 

  8. Lu, J., Tan, Y.P., Wang, G.: Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. Pattern Anal. Mach. Intell. 35, 39–51 (2013)

    Article  Google Scholar 

  9. Kim, T.K., Kittler, J.: Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. IEEE Trans. Pattern Anal. Mach. Intell. 27, 318–327 (2005)

    Article  Google Scholar 

  10. Wang, J., Plataniotis, K.N., Lu, J., Venetsanopoulos, A.N.: On solving the face recognition problem with one training sample per subject. Pattern Recogn. 39, 1746–1762 (2006)

    Article  MATH  Google Scholar 

  11. Kan, M., Shan, S., Su, Y., Xu, D., Chen, X.: Adaptive discriminant learning for face recognition. Pattern Recogn. 46, 2497–2509 (2013)

    Article  Google Scholar 

  12. Mohammadzade, H., Hatzinakos, D.: Projection into expression subspaces for face recognition from single sample per person. IEEE Trans. Affect. Comput. 4, 69–82 (2013)

    Article  Google Scholar 

  13. Deng, W., Hu, J., Guo, J.: Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1864–1870 (2012)

    Article  Google Scholar 

  14. Huang, D.A., Wang, Y.C.F.: With one look: robust face recognition using single sample per person. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 601–604. ACM (2013)

    Google Scholar 

  15. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  16. Chen, S., Liu, J., Zhou, Z.: Making FLDA applicable to face recognition with one sample per person. Pattern Recogn. 37, 1553–1555 (2004)

    Article  Google Scholar 

  17. Kumar, R., Banerjee, A., Vemuri, B.C., Pfister, H.: Maximizing all margins: pushing face recognition with kernel plurality. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2375–2382 (2011)

    Google Scholar 

  18. Zhu, P., Zhang, L., Hu, Q., Shiu, S.C.K.: Multi-scale patch based collaborative representation for face recognition with margin distribution optimization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 822–835. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Kumar, R., Banerjee, A., Vemuri, B.C.: Volterrafaces: discriminant analysis using volterra kernels. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 150–155. IEEE (2009)

    Google Scholar 

  20. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: International Conference on Computer Vision (2011)

    Google Scholar 

  21. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23, 643–660 (2001)

    Article  Google Scholar 

  22. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image Vis. Comput. 28, 807–813 (2010)

    Article  Google Scholar 

  23. Martinez, A.: The ar face database. CVC Technical Report 24 (1998)

    Google Scholar 

  24. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  25. Lu, C., Tang, J., Lin, M., Lin, L., Yan, S., Lin, Z.: Correntropy induced l2 graph for robust subspace clustering. In: Proceedings of 14th IEEE International Conference on Computer Vision (ICCV) (2013) (in press)

    Google Scholar 

  26. Liu, W., Pokharel, P.P., Príncipe, J.C.: Correntropy: properties and applications in non-gaussian signal processing. IEEE Trans. Sig. Process. 55, 5286–5298 (2007)

    Article  Google Scholar 

  27. Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27, 937–966 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. He, R., Tan, T., Wang, L., Zheng, W.S.: \(l_{2,1}\)-regularized correntropy for robust feature selection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2504–2511. IEEE (2012)

    Google Scholar 

  29. He, R., Zheng, W.S., Tan, T., Sun, Z.: Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 36, 261–275 (2014)

    Article  Google Scholar 

  30. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967)

    Article  MATH  Google Scholar 

  31. Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  32. Su, Y., Shan, S., Chen, X., Gao, W.: Adaptive generic learning for face recognition from a single sample per person. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2699–2706. IEEE (2010)

    Google Scholar 

  33. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2, 27 (2011)

    Google Scholar 

  34. Wolf, L., Hassner, T., Taigman, Y.: Similarity scores based on background samples. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009, Part II. LNCS, vol. 5995, pp. 88–97. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was (partially) supported by LG Electronics Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, P., Yang, M., Zhang, L., Lee, IY. (2015). Local Generic Representation for Face Recognition with Single Sample per Person. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16811-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16810-4

  • Online ISBN: 978-3-319-16811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics