Skip to main content

Image Restoration via Multi-prior Collaboration

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9005))

Included in the following conference series:

  • 2603 Accesses

Abstract

This paper proposes a novel multi-prior collaboration framework for image restoration. Different from traditional non-reference image restoration methods, a big reference image set is adopted to provide the references and predictions of different popular prior models and accordingly further guide the subsequent multi-prior collaboration. In particular, the collaboration of multi-prior models is mathematically formulated as a ridge regression problem. Due to expensive computation complexity of handling big reference data, scatter-matrix-based kernel ridge regression is proposed, which achieves high accuracy while low complexity. Additionally, an iterative pursuit is further proposed to obtain refined and robust restoration results. Five popular prior methods are applied to evaluate the effectiveness of the proposed multi-prior collaboration framework. Compared with the state-of-the-art image restoration approaches, the proposed framework improves the restoration performance significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bioucas-Dias, J., Figueiredo, M.: A new twIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16, 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  2. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20, 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  3. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

    MATH  MathSciNet  Google Scholar 

  4. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MATH  Google Scholar 

  6. Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  7. Eckstein, J., Bertsekas, D.: On the douglas rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Yin, W., Osher, S., Goldfarb, D., Darbo, J.: Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM J. Imag. Sci. 1, 142–168 (2008)

    Article  Google Scholar 

  9. Setzer, S.: Operator splittings, bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92, 265–280 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuitie. IEEE Trans. Pattern Anal. Mach. Intell. 14, 367–383 (1992)

    Article  Google Scholar 

  11. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chan, R., Dong, Y., Hintermuller, M.: An efficient two-phase L1-TV method for restoring blurred images with impulse noise. IEEE Trans. Image Process. 19, 1731–1739 (2010)

    Article  MathSciNet  Google Scholar 

  13. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV, vol. 2, pp. 1022–1038 (1999)

    Google Scholar 

  14. Buades, A., Coll, B., Morel, J.M.: Image enhancement by non-local reverse heat equation. CMLA Technical Report 22 (2006)

    Google Scholar 

  15. Zhang, J., Liu, S., Xiong, R., Ma, S., Zhao, D.: Improved total variation based image compressive sensing recovery by nonlocal regularizatio. In: IEEE International Symposium on Circuits and Systems, pp. 2836–2839 (2013)

    Google Scholar 

  16. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. In: Proceedings of the National Academy of Sciences, vol. 102, pp. 7426–7431 (2005)

    Google Scholar 

  17. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. CMLA Technical Report 23 (2007)

    Google Scholar 

  18. Jung, M., Bresson, X., Chan, T.F., Vese, L.A.: Nonlocal mumford-shah regularizers for color image restoration. IEEE Trans. Image Process. 20, 1583–1598 (2011)

    Article  MathSciNet  Google Scholar 

  19. Kindermann, S., Osher, S., Jones, P.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4, 1091–1115 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imag. Sci. 3, 253–276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhang, J., Xiong, R., Ma, S., Zhao, D.: High-quality image restoration from partial random samples in spatial domain. In: VCIP, pp. 1–4 (2011)

    Google Scholar 

  22. Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed mr imaging using total variation and wavelets. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  23. Chen, C., Huang, J.: Compressive sensing mri with wavelet tree sparsity. In: NIPS, pp. 1124–1132 (2012)

    Google Scholar 

  24. Woodbury, M.A.: Inverting Modified Matrices. Princeton University, Princeton (1950)

    Google Scholar 

  25. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  26. Roth, S., Black, M.J.: Fields of experts: A framework for learning image priors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 860–867. IEEE (2005)

    Google Scholar 

  27. Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  28. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 12, 1338–1351 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jegou, H., Douze, M., Schmid, C.: Inria holidays dataset (2008)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Major State Basic Research Development Program of China (973 Program 2015CB351804) and the National Natural Science Foundation of China under Grant No. 61272386, 61100096 and 61300111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiang, F., Zhang, S., Zhao, D., Kung, S.Y. (2015). Image Restoration via Multi-prior Collaboration. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16811-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16810-4

  • Online ISBN: 978-3-319-16811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics