Skip to main content

Which Image Pairs Will Cosegment Well? Predicting Partners for Cosegmentation

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9005))

Included in the following conference series:

  • 2577 Accesses

Abstract

Cosegmentation methods segment multiple related images jointly, exploiting their shared appearance to generate more robust foreground models. While existing approaches assume that an oracle will specify which pairs of images are amenable to cosegmentation, in many scenarios such external information may be difficult to obtain. This is problematic, since coupling the “wrong” images for segmentation—even images of the same object class—can actually deteriorate performance relative to single-image segmentation. Rather than manually specify partner images for cosegmentation, we propose to automatically predict which images will cosegment well together. We develop a learning-to-rank approach that identifies good partners, based on paired descriptors capturing the images’ amenability to joint segmentation. We compare our approach to alternative methods for partnering images, including basic image similarity, and show the advantages on two challenging datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the terms cosegmentation, joint segmentation, and weakly supervised segmentation interchangeably.

  2. 2.

    Alternatively, one could use regression. However, ranking has the advantage of giving us more control over which training tuples are enforced, and it places emphasis only on the relative scores (not absolute values), which is what we care about for deciding which partner is best.

  3. 3.

    http://people.csail.mit.edu/mrub/ObjectDiscovery/.

  4. 4.

    http://www.vision.caltech.edu/ImageDatasets/Caltech101/.

  5. 5.

    These are the overlap accuracies reported in [8], where the authors applied the public source code to generate results for [57].

References

  1. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching - incorporating a global constraint into MRFs. In: CVPR (2006)

    Google Scholar 

  2. Winn, J., Jojic, N.: LOCUS: learning object classes with unsupervised segmentation. In: ICCV (2005)

    Google Scholar 

  3. Alexe, B., Deselaers, T., Ferrari, V.: ClassCut for unsupervised class segmentation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 380–393. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In: CVPR (2011)

    Google Scholar 

  5. Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-segmentation. In: CVPR (2010)

    Google Scholar 

  6. Joulin, A., Bach, F., Ponce, J.: Multi-class cosegmentation. In: CVPR (2012)

    Google Scholar 

  7. Kim, G., Xing, E., Fei Fei, L., Kanade, T.: Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: ICCV (2011)

    Google Scholar 

  8. Rubinstein, M., Joulin, A., Kopf, J., Liu, C.: Unsupervised joint object discovery and segmentation in internet images. In: CVPR (2013)

    Google Scholar 

  9. Cao, L., Fei-Fei, L.: Spatially coherent latent topic model for concurrent segmentation and Classification of objects and scenes. In: ICCV (2007)

    Google Scholar 

  10. Todorovic, S., Ahuja, N.: Unsupervised category modeling, recognition, and segmentation in images. PAMI 30, 2158–2174 (2008)

    Article  Google Scholar 

  11. Lee, Y.J., Grauman, K.: Collect-cut: segmentation with top-down cues discovered in multi-object images. In: CVPR (2010)

    Google Scholar 

  12. Hochbaum, D., Singh, V.: An efficient algorithm for co-segmentation. In: ICCV (2009)

    Google Scholar 

  13. Batra, D., Kowdle, A., Parikh, D., Luo, J., Chen, T.: iCoseg: interactive co-segmentation with intelligent scribble guidance. In: CVPR (2010)

    Google Scholar 

  14. Russell, B., Efros, A., Sivic, J., Freeman, W., Zisserman, A.: Using multiple segmentations to discover objects and their extent in image collections. In: CVPR (2006)

    Google Scholar 

  15. Faktor, A., Irani, M.: “Clustering by composition” – unsupervised discovery of image categories. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 474–487. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Liu, D., Xiong, Y., Pulli, K., Shapiro, L.: Estimating image segmentation difficulty. In: Machine Learning and Data Mining in Pattern Recognition (2011)

    Google Scholar 

  17. Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using constrained parametric min-cuts. PAMI 34, 1312–1328 (2012)

    Article  Google Scholar 

  18. Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Ren, X., Malik, J.: Learning a classication model for segmentation. In: ICCV (2003)

    Google Scholar 

  20. Jain, S., Grauman, K.: Predicting sufficient annotation strength for interactive foreground segmentation. In: ICCV (2013)

    Google Scholar 

  21. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: ICCV (2013)

    Google Scholar 

  22. Rother, C., Kolmogorov, V., Blake, A.: Grabcut -interactive foreground extraction using iterated graph cuts. In: SIGGRAPH (2004)

    Google Scholar 

  23. Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences. In: CVPR (2013)

    Google Scholar 

  24. Joachims, T.: Optimizing search engines with clickthrough data. In: KDD (2002)

    Google Scholar 

  25. Kohli, P., Torr, P.H.S.: Measuring uncertainty in graph cut solutions. CVIU 112, 30–38 (2008)

    Google Scholar 

  26. Torralba, A.: Contextual priming for object detection. Int. J. Comput. Vis. 53, 169–191 (2003)

    Article  Google Scholar 

  27. Kim, J., Grauman, K.: Boundary preserving dense local regions. In: CVPR (2011)

    Google Scholar 

Download references

Acknowledgements

This research is supported in part by ONR award N00014-12-1-0068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suyog Dutt Jain .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (pdf 27 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jain, S.D., Grauman, K. (2015). Which Image Pairs Will Cosegment Well? Predicting Partners for Cosegmentation. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16811-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16810-4

  • Online ISBN: 978-3-319-16811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics