Skip to main content

Growth and Defense Metabolism of Plants Exposed to Ultraviolet-B Radiation

  • Chapter
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 17))

Abstract

Increases in ultraviolet (UV) radiation at the Earth’s surface due to the depletion of the stratospheric ozone layer are major concern for researchers, posing interest in the mechanisms of various effects on organisms. Although UV radiation comprises only a small fraction of the total solar radiation that is incident at the earth’s surface, it has the greatest energy per unit wavelength and, thus, the greatest potential to damage the biosphere. Intensified current and projected UV-B radiation is responsible for multiple detrimental effects on plant growth and metabolism via interfering with biological processes. In plants, these effects include lipid oxidation, DNA damage, protein destruction which often causes heritable mutations. High UV-B levels introduce DNA damage, number of different lesions, predominantly cyclobutane pyrimidine dimer and pyrimidine (6–4) pyrimidinone products in the genome. It affects physiological processes, including the photosynthetic apparatus; causes loss of crop yield and productivity. Plants developed a number of repair or tolerance mechanisms to counteract the damage caused by UV or any other stressors.

Here we reviewed the structural and biochemical defense strategy of plants in response to Ultraviolet-B radiation. The major points are as follows (i) in brief focus on global scenario of ozone depletion and consequent trend of increase in UV-B irradiation level; (ii) Effect of UV-B on shoot morphology, canopy structure (anatomical changes) could alter the stand photosynthesis, attributed to loss of Biomass and yield (iii) UV-B might play role as a signal molecule to up-regulate the expression of gene involve in multiple developmental response i.e. photomorphogenic response and antioxidants defense (iv) Some kinds of UV-B screening pigments such as carotenoids, flavonoids protect plant cells against intensive penetration of UV-B radiation. (v) Activation of non enzymatic antioxidants as well as enzymes by the Ultraviolet-B factors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

UV-B:

Ultraviolet-B

O3 :

Ozone

ROS:

Reactive Oxygen Species

DNA:

Deoxyribonucleic acid

PSII:

Photosystem II

O2 ∙− :

Superoxide ion

1O2 :

Singlet Oxygen

H2O2 :

Hydrogen peroxide

·OH:

Hydroxyl radicals

CPDs:

Cyclobutane-type pyrimidine dimers

Rubisco:

Ribulose-1, 5-bisphosphate carboxylase/oxygenase

PAL:

Phenylalanine ammonia-lyase

SOD:

Superoxide dismutase

CAT:

Catalase

POD:

Peroxidases

APX:

Ascorbate peroxidase

MDHAR:

Monodehydro-ascorbate reductase

DHAR:

Dehydro-ascorbate reductase

GR:

Glutathione reductase

GSH:

Glutathione

References

  • Agarwal S (2007) Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biol Plant 51:157–160

    CAS  Google Scholar 

  • Agrawal SB, Mishra S (2009) Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicol Environ Saf 72:610–618

    CAS  PubMed  Google Scholar 

  • Agrawal SB, Rathore D (2007) Changes in oxidative stress defense system in wheat (Triticum aestivum L.) and mung bean (Vigna radiata L.) cultivars grown with and without mineral nutrients and irradiated by supplemental ultraviolet-B. Environ Exp Bot 59:21–23

    CAS  Google Scholar 

  • Agrawal SB, Rathore D, Singh A (2004a) Combined effects of enhanced UV-B radiation and additional nutrients on two cultivars of wheat (Triticum aestivum L.). Physiol Mol Biol Plant 10:99–108

    CAS  Google Scholar 

  • Agrawal SB, Rathore D, Singh A (2004b) Effect of supplemental ultraviolet-B and mineral nutrients on growth, biomass allocation and yield of wheat (Triticum aestivum L.). Trop Ecol 45:315–325

    Google Scholar 

  • Agrawal SB, Rathore D, Singh A (2006) Combined effects of enhanced ultraviolet-B radiation and mineral nutrients on growth, biomass accumulation and yield characteristics of two cultivars of Vigna radiate L. J Environ Biol 27:55–60

    CAS  PubMed  Google Scholar 

  • Agrawal SB, Singh S, Agrawal M (2009) UV-B induced changes in gene expression and antioxidants in plants, Chapter 3. Adv Bot Res 52:47–86

    CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    CAS  Google Scholar 

  • Alia B, Saradhi PP, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J Photochem Photobiol B 38:253–257

    CAS  Google Scholar 

  • Allen DJ, Nogues S, Baker NR (1998) Ozone depletion and increased UV-B radiation: is there a threat to photosynthesis? J Exp Bot 49:1775–1788

    CAS  Google Scholar 

  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442

    CAS  PubMed  Google Scholar 

  • Ambasht NK, Agrawal M (2003a) Interactive effects of ozone and ultraviolet-B radiation on physiological and biochemical characteristics of soybean plants. J Plant Biol 30:37–45

    Google Scholar 

  • Ambasht NK, Agrawal M (2003b) Effects of enhanced UV-B radiation and tropospheric ozone on physiological and biochemical characteristics of field grown wheat. Biol Plant 47:625–628

    CAS  Google Scholar 

  • Arrigoni O, De Tullio MC (2002) Ascorbic acid, much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    CAS  PubMed  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    CAS  Google Scholar 

  • Atmani D, Chaher N, Atmani D, Berboucha M, Debbache N, Boudaoud H (2009) Flavonoids in human health: from structure to biological activity. Curr Nutr Food Sci 5:225–237

    CAS  Google Scholar 

  • Balakrishnan V, Venkatesan K, Konganapuram E, Ravindrani C, Kulandaivelu G (2005) Protective mechanism in UV-B treated Crotalaria juncea L. seedlings. Plant Prot Sci 41:115–120

    Google Scholar 

  • Ballaré CL, Scopel AL, Stapleton AE, Yanovsky MJ (1996) Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox. Plant Physiol 112:161–170

    PubMed Central  PubMed  Google Scholar 

  • Ballaré CL, Rousseaux MC, Searles PS (2001) Impacts of solar ultraviolet- B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina)—an overview of recent progress. J Photochem Photobiol B Biol 62:67–77

    Google Scholar 

  • Barnes PW, Ballaré CL, Caldwell MM (1996) Photomorphogenic effect of UV-B radiation on plants: consequences for light competition. J Plant Physiol 148:15–20

    CAS  Google Scholar 

  • Bassman JH, Edward GE, Robberecht R (2002) Long term exposure to enhanced UV-B radiation is not detrimental to growth and photosynthesis in Douglas-fir. New Phytol 154:107–120

    CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonasoni P, Calzolari F, Cristofanelli P, Bonafe U, Evangelisti F, Van Dingenen R, Balkanski Y (2001) Ozone and aerosol correlation during Sahara dust transport episodes at Mount Climone during Minatroc project. In: 8th European symposium on the physico-chemical behavior of atmospheric pollutants, NASA Astrophysics Data report, Torino

    Google Scholar 

  • Bornman JF (1989) Target sites of UV-B radiation in photosynthesis of higher plants. J Photochem Photobiol B Biol 4:145–158

    CAS  Google Scholar 

  • Britt AB (2004) Repair of DNA damage induced by solar UV. Photosynth Res 81:105–112

    CAS  Google Scholar 

  • Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 8:90–95

    CAS  PubMed  Google Scholar 

  • Brosche M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1–10

    CAS  Google Scholar 

  • Caldwell MM, Flint SD (1994) Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Climate Change 28:375–394

    CAS  Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266

    CAS  PubMed  Google Scholar 

  • Carletti P, Masi A, Wonisch A, Grill D, Tausz M, Ferretti M (2003) Changes in antioxidant and pigment pool dimensions in UV-B irradiation maize seedlings. Environ Exp Bot 50:149–157

    CAS  Google Scholar 

  • Casati P, Walbot V (2004) Cross linking of ribosomal proteins to RNA in maize ribosomes by UV-B and its effects on translation. Plant Physiol 136:3319–3332

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cechin I, Corniani N, de Fumis T (2008) Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants. Radiat Environ Biophys 47:404–413

    Google Scholar 

  • Cen Y, Bornman JF (1993) The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus. Physiol Plant 87:249–255

    CAS  Google Scholar 

  • Correia CM, Coutinho JF, Björn LO, Torres-Pereira JMG (2000) Ultraviolet-B radiation and nitrogen effects on growth and yield of maize under Mediterranean field conditions. Eur J Agron 12:117–125

    CAS  Google Scholar 

  • Costa H, Gallego SM, Tomaro ML (2002) Effects of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci 162:939–945

    CAS  Google Scholar 

  • Cuadra P, Herrera R, Fajardo V (2004) Effects of UV-B radiation on the Patagonian Jaborosa magellanica Brisben. J Photochem Photobiol B Biol 76:61–68

    CAS  Google Scholar 

  • Dany AL, Douki T, Triantaphylides C, Cadet J (2001) Repair of the main UV induced thymine dimeric lesions within Arabidopsis thaliana DNA: evidence for the major involvement of photoreactivation pathways. J Photochem Photobiol B 65:127–135

    CAS  PubMed  Google Scholar 

  • Day TA, Neale PJ (2002) Effects of UV-B radiation on terrestrial and aquatic primary producers. Annu Rev Ecol Syst 33:371–396

    Google Scholar 

  • Deneke SM (2000) Thiol-based antioxidants. Curr Top Cell Regul 36:151–180

    CAS  PubMed  Google Scholar 

  • Dillenburg LR, Sullivan JH, Teramura AH (1995) Leaf expansion and development of photosynthetic capacity and pigments in Liquidambar styraciflua (Hamamelicaceae)––effects of UV-B radiation. Am J Bot 82:878–885

    CAS  Google Scholar 

  • Du W-X, Avena-Bustillos RJ, Breksa AP III, McHugh T-H (2012) Effect of UV-B light and different cutting styles on antioxidant enhancement of commercial fresh-cut carrot products. Food Chem 134:1862–1869

    CAS  PubMed  Google Scholar 

  • Eva H (ed) (1999) Utilizing new adamantly spin traps in studying UV-B-induced oxidative damage of photosystem II. J Photochem Photobiol B: Biol 48:174–179

    Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4:415–420

    CAS  PubMed  Google Scholar 

  • Executive summary (2003) Environmental effects of ozone depletion and its interactions with climate change: 2002 assessment. Photochem Photobiol Sci 2:1–4

    Google Scholar 

  • Farooq M, Shankar U, Ray RS, Agrawal N, Verma K, Hans RK (2005) Morphological and metabolic alterations in duckweed Spirodela polyrhiza on long term low level chronic exposure. Ecotoxicol Environ Saf 62:408–414

    CAS  PubMed  Google Scholar 

  • Fazeli F, Ghorbanli M, Niknam V (2007) Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol Plant 51:98–103

    CAS  Google Scholar 

  • Feng H, An L, Chen T, Qiang W, Xu S, Zhang M, Wang X, Cheng G (2003) The effect of enhanced ultraviolet-B radiation on growth, photosynthesis and stable carbon isotope composition (13C) of two soybean cultivars (Glycine max) under field conditions. Environ Exp Bot 49:1–8

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants, a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    CAS  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation mediated responses in plants, balancing damage and protection. Plant Physiol 133:1420–1428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto K (2004) A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet- B irradiation. Plant Physiol 134:275–285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fukuda S, Satoh A, Kasahara H, Matsuyama H, Takeuchi Y (2008) Effects of ultraviolet-B irradiation on the cuticular wax of cucumber (Cucumis sativus) cotyledons. J Plant Res 121:179–189

    CAS  PubMed  Google Scholar 

  • Galatro A, Simontacchi M, Puntarulo S (2001) Free radical generation and antioxidant content in chloroplasts from soybean leaves exposed to ultraviolet-B. Physiol Plant 113:564–570

    CAS  Google Scholar 

  • Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138–148

    CAS  PubMed  Google Scholar 

  • Gao W, Zheng Y, Slusser JR, Heisler GM (2003) Impact of enhanced ultraviolet-B radiation on cotton growth, development, yield and qualities under field conditions. Agric For Meteorol 120:214–248

    Google Scholar 

  • Gerhardt KE, Wilson MI, Greenberg BM (1999) Tryptophan photolysis leads to a UVB-induced 66 kDa photoproduct of ribulose-1,5- bisphosphate carboxylase/oxygenase (Rubisco) in vitro and in vivo. Photochem Photobiol 70:49–56

    CAS  Google Scholar 

  • Gerhardt KE, Wilson MI, Greenberg BM (2005) Ultraviolet wavelength dependence of photomorphological and photosynthetic responses in Brassica napus and Arabidopsis thaliana. Photochem Photobiol 81:1061–1068

    CAS  PubMed  Google Scholar 

  • Gilbert M, Pors Y, Grover K, Weingart I, Skotnica J, Grimm B, Seidlitz HK, Langebartales C, Wilhelm C (2009) Intra- and inter-specific differences of 10 barley and 10 tomato cultivars in response to short-time UV-B radiation: a study analysing thermoluminescence, fluorescence, gas-exchange and biochemical parameters. Environ Pollut 157:1603–1612

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Giordano CV, Galatro A, Puntarulo S, Ballaré CL (2004) The inhibitory effects of UV-B radiation (280–315 nm) on Gunnera magellanica growth correlate with increased DNA damage but not with oxidative damage to lipids. Plant Cell Environ 27:1415–1423

    CAS  Google Scholar 

  • Girotti AW (1985) Mechanisms of lipid peroxidation. Free Radic Biol Med 1:87–95

    CAS  Google Scholar 

  • Gonzalez R, Paul ND, Percy K, Ambrose M, McLaughlin CK, Barnes JD, Areses M, Wellburn AR (1996) Responses to ultraviolet-B radiation (280–315 nm) of pea (Pisum sativum) lines differing in leaf surface wax. Physiol Plant 98:852–860

    CAS  Google Scholar 

  • Gonzalez JA, Rosa M, Parrado MF, Hilal M, Prado FE (2009) Morphological and physiological responses of two varieties of a highland species. J Photochem Photobiol B 96:144–151

    CAS  PubMed  Google Scholar 

  • Gould KS (2002) The colour red. N Z J Geogr 60:59–63

    Google Scholar 

  • Hagh AG, Khara J, Darvishzadeh R (2012) Effect of UV-B radiation on activity of antioxidant enzymes in four sunflower cultivars. Int J Agric Res Rev 2:528–534

    Google Scholar 

  • Havaux M, Lutz C, Grimm B (2003) Chloroplast membrane stability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol 132:300–310

    PubMed Central  CAS  PubMed  Google Scholar 

  • He J, Huang L-K, Whitecross MI (1994) Chloroplast ultrastructure changes in Pisum sativum associated with supplementary ultraviolet (UV-B) radiation. Plant Cell Environ 17:771–775

    Google Scholar 

  • Hidema J, Kumagai T, Sutherland BM (2000) UV radiation-sensitive Norin 1 rice contains defective cyclobutane pyrimidine dimer photolyase. Plant Cell 12:1569–1578

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hidema J, Song IK, Kumagai T (2001) Relationship between ultraviolet-B sensitivity and cyclobutane pyrimidine dimer photorepair in rice. J Radiat Res 42:295–303

    CAS  PubMed  Google Scholar 

  • Hofmann RW, Campbell BD (2011) Response of Trifolium repens to UV-B radiation: morphological links to plant productivity and water availability. Plant Biol 2011(13):896–901

    Google Scholar 

  • Hollosy F (2002) Effect of ultraviolet radiation on plant cell. Micron 33:179–197

    CAS  PubMed  Google Scholar 

  • Hopkins L, Bond MA, Tobin AK (2002) Ultraviolet-B radiation reduces the rates of cell division and elongation in the primary leaf of wheat (Triticum aestivum L cv Maris Huntsman). Plant Cell Environ 25:617–624

    Google Scholar 

  • Iwamatsu Y, Aoki C, Takahashi M, Teranishi M, Ding Y, Sun C, Kumagai T, Hidema J (2008) UV-B sensitivity and cyclobutane pyrimidine dimer (CPD) photolyase genotypes in cultivated and wild rice species. Photochem Photobiol Sci 7:311–320

    CAS  PubMed  Google Scholar 

  • Jain K, Kataria S, Guruprasad KN (2004) Effect of UV-B radiation on antioxidant enzymes and its modulation by benzoquinone and a-tocopherol in cucumber cotyledons. Curr Sci 87:87–90

    CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Zhao C-X, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plant and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Google Scholar 

  • Jayakumar M, Amudha P, Kulandaivelu G (2004) Effect of low doses of UV-A and UV-B radiation on photosynthetic activities in Phaseolus mungo L. J Plant Biol 47:105–110

    Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    CAS  PubMed  Google Scholar 

  • Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:97–162

    CAS  Google Scholar 

  • Jordan BR (2002) Molecular response of plant cells to UV-B stress. Funct Plant Biol 29:909–916

    CAS  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Mohammed AR (2003a) Effect of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817–827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003b) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 120:191–218

    Google Scholar 

  • Katerova Z, Ivanov S, Mapelli S, Alexieva V (2009) Phenols, proline and low-molecular thiol levels in pea (Pisum sativum) plants respond differently toward prolonged exposure to ultraviolet-B and ultraviolet-C radiations. Acta Physiol Plant 31:111–117

    CAS  Google Scholar 

  • Keil M, Jackson DR, Hort MC (2006) The January 2006 low ozone event over the UK. Atmos Chem Phys Discuss 6:8457–8483

    Google Scholar 

  • Kliebenstein DK (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684

    CAS  Google Scholar 

  • Kolb CA, Käser MA, Kopecký J, Zotz G, Riederer M, Pfündel EE (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127:863–875

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kolb CA, Kopecky J, Riederer M, Pfundel EE (2003) UV screening by phenolics in berries of grapevine (Vitis vinifera). Funct Plant Biol 30:1177–1186

    CAS  Google Scholar 

  • Kondo N, Kawashima M (2000) Enhancement of the tolerance to oxidative stress in cucumber (Cucumis sativus L.). J Plant Res 113:311–317

    CAS  Google Scholar 

  • Konopacka M, Widel M, Rzeszowska-Wolny M (1998) Modifying effect of vitamins C, E and beta-carotene against gamma-ray-induced DNA damage in mouse cells. Mutat Res 417:85–94

    CAS  PubMed  Google Scholar 

  • Kostina E, Wulff A, Julkunen-Tiitto R (2001) Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees 15:483–491

    CAS  Google Scholar 

  • Kumari R, Agrawal SB (2010) Supplemental UV-B induced changes in leaf morphology, physiology and secondary metabolites of an Indian aromatic plant Cymbopogon citratus (D.C.) Staph under natural field conditions. Int J Environ Stud 67:655–675

    CAS  Google Scholar 

  • Kumari R, Singh S, Agrawal SB (2010) Responses of ultraviolet-B induced antioxidant defense system in a medicinal plant Acorus calamus L. J Environ Biol 31:907–911

    CAS  PubMed  Google Scholar 

  • Kumari R, Singh S, Agrawal SB (2009a) Combined effects of Psoralens and ultraviolet-B on growth, pigmentation and biochemical parameters of Abelmoschus esculentus L. Ecotoxicol Environ Saf 72:1129–1136

    CAS  PubMed  Google Scholar 

  • Kumari R, Singh S, Agrawal SB (2009b) Responses of supplemental ultraviolet-B radiation on growth and physiology of Acorus calamus L. (Sweet flag). Acta Biol Cracov Ser Bot 52:19–27

    Google Scholar 

  • Kumari R, Agrawal SB, Singh S, Dubey NK (2009c) Supplemental ultraviolet-B induced changes in essential oil composition and total phenolics of Acorus calamus L. (Sweet flag). Ecotoxicol Environ Saf 72:2013–2019

    CAS  PubMed  Google Scholar 

  • Landry LG, Chapple CC, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet- B injury and oxidative damage. Plant Physiol 109:1159–1166

    PubMed Central  CAS  PubMed  Google Scholar 

  • Láposi R, Veres S, Mile O, Mészáros I (2005) Effects of supplemental UV-B radiation on the photosynthesis—physiological properties and flavonoid content of beech seedlings (Fagus sylvatica L.) in outdoor conditions. Acta Biol Szeged 49:151–153

    Google Scholar 

  • Laposi R, Veres S, Lakatos G, Olah V, Fieldsend A, Meszaros I (2009) Responses of leaf traits of European beech (Fagus sylvatica L.) saplings to supplemental UV-B radiation and UV-B exclusion. Agric For Meterol 149:745–755

    Google Scholar 

  • Li YA, Zu YQ, Chen HY, Chen JJ, Yang JL, Hu ZD (2000) Intraspecific responses in crop growth and yield of 20 wheat cultivars to enhanced ultraviolet- B radiation under field conditions. Field Crop Res 67:25–33

    Google Scholar 

  • Liakoura V, Bornman JF, Karabourniotis G (2003) The ability of abaxial and adaxial epidermis of sun and shade leaves to attenuate UV-A and UV-B radiation in relation to the UV absorbing capacity of whole leaf methanolic extracts. Physiol Plant 117:33–43

    CAS  Google Scholar 

  • Liu L-X, Xu SM, Woo KC (2005) Solar UV-B radiation on growth, photosynthesis and xanthophyll cycle in tropical acacias and eucalyptus. Environ Exp Bot 54:121–130

    CAS  Google Scholar 

  • Lizana XC, Hess S, Calderini DF (2009) Crop phenology modifies wheat responses to increased UV-B radiation. Agric For Meteorol 149:1964–1974

    Google Scholar 

  • Long LM, Patel HP, Wendy CC, Stapleton AE (2003) The maize epicuticular wax layer provides UV protection. Funct Plant Biol 35:75–81

    Google Scholar 

  • Mackerness A-H-S (2000) Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: what are the key regulators? Plant Growth Regul 37:27–39

    Google Scholar 

  • Madhavian K, Ghorbanli M, Kalantari KM (2008) The effects of ultraviolet radiation on some antioxidant components and enzymes in Capsicum annuum L. Turk J Bot 32:129–134

    Google Scholar 

  • Madronich S, McKenzie RL, Caldwell MM, Bjorn LO (1995) Changes in ultraviolet reaching the earth’s surface. Ambio 24:143–152

    Google Scholar 

  • Manetas Y (2003) The importance of being hairy: the adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation. New Phytol 158:503–508

    Google Scholar 

  • Mazza CA, Boccalandro HE, Giordano CV, Battista D, Scopel AL, Ballaré CL (2000) Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. Plant Physiol 122:117–126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mazza CA, Gimenezb PI, Kantolicb AG, Ballaré CL (2013) A beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions. Physiol Plant 147:307–315. doi:10.1111/j.1399-3054.2012.01661.x

    CAS  PubMed  Google Scholar 

  • McKenzie R, Connor B, Bodeker G (1999) Increased summertime UV radiation in New Zealand in response to ozone loss. Science 285:1709–1711

    CAS  PubMed  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M, Madronich S (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10:182–198

    CAS  PubMed  Google Scholar 

  • Mishra S, Agrawal SB (2006) Interactive effects between supplemental UV-B radiation and heavy metals on growth and biochemical characteristics of Spinacia oleracea L. Braz J Plant Physiol 18:1–8

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Monsi M (1968) Mathematical models of plant communities. In: Eckardt F (ed) Function of terrestrial ecosystem at the primary production level. UNESCO, Paris, pp 131–150

    Google Scholar 

  • Mori M, Yoshida K, Ishigaki Y et al (2005) UV-B protective effect of a polyacylated anthocyanin, HBA, in flower petals of the blue morning glory. Ipomoea tricolor cv. Heavenly Blue. Bioorg Med Chem 13:2015–2020

    CAS  PubMed  Google Scholar 

  • Murphy TM (1984) Effect of sulfhydryl reagents on K+ efflux from rose cells, relationship to ultraviolet-stimulated efflux. Plant Physiol 75:138–141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nara A, Takeuchi Y (2002) Ethylene evolution from tobacco leaves irradiated with UV-B. J Plant Res 115:247–253

    PubMed  Google Scholar 

  • Nithia SMJ, Shanthi N, Kulandaivelu G (2005) Different responses to UV-B enhanced solar radiation in radish and carrot. Photosynthetica 43:307–311

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  PubMed  Google Scholar 

  • Oravecz A, Baumann A, Mate Z, Brzezinska A, Molinier J, Oakeley EJ, Adam E, Schafer E, Nagy F, Ulm R (2006) Constitutively photomorphogenic1 is required for the UV-B response in Arabidopsis. Plant Cell 18:1975–1990

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perluigi M, Domenico FD, Blarzino C, Foppoli C, Cini C, Giorgi A, Grillo C, Federico De Marco, Butterfield DA, Schininà ME, Coccia R (2010) Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach. Protein Sci 8:13

    Google Scholar 

  • Peykarestan B, Seify M (2012) UV irradiation effects on seed germination and growth, protein content, peroxidase and protease activity in redbean. Int Res J Appl Basic Sci 3:92–102

    CAS  Google Scholar 

  • Prasad SM, Srivastava G, Mishra V, Dwivedi R, Zeeshan M (2005) Active oxygen species generation, oxidative damage and antioxidative defense system in Pisum sativum exposed to UV-B irradiation. Physiol Mol Biol Plant 11:303–311

    CAS  Google Scholar 

  • Qaderi MM, Reid DM (2005) Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions. Physiol Plant 125:247–259

    CAS  Google Scholar 

  • Raneeliene V, Vyoniauskiene R, Janeys Z, Dlekyte K (2005) Action of UV-B on Crepis apillaris (L.) Wallr plants in controlled environmental conditions. Biologija 3:74–80

    Google Scholar 

  • Rathore D, Agrawal SB, Singh A (2003) Influence of supplemental UV-B radiation and mineral nutrients on biomass, pigments and yield of two cultivars of wheat. Int J Biotron 32:1–15

    Google Scholar 

  • Reddy KR, Kakani VG, Zhao D, Koti S, Gao W (2004) Interactive effects of ultraviolet-B-radiation and temperature on cotton physiology, growth development and hyperspectral reflectance. Photochem Photobiol 79:416–427

    CAS  PubMed  Google Scholar 

  • Robberecht R, Caldwell MM (1978) Leaf epidermal transmission of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury. Oecologia 32:277–287

    Google Scholar 

  • Rozema J, Bjorn LO, Bornman JF, Gaberscik A, Häder D-P, Trost T, Germ M, Klisch M, Gröniger A, Sinha RP, Lebert M, He Y-Y, Buffoni-Hall R, de Bakker NVJ, van de Staaij J, Meijkamp BB (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems – an experimental and functional analysis of the evolution of UV-absorbing compound. J Photochem Photobiol B Biol 66:2–12

    CAS  Google Scholar 

  • Ryan KG, Hunt JE (2005) The effects of UVB radiation on temperate southern hemisphere forests. Environ Pollut 137:415–427

    CAS  PubMed  Google Scholar 

  • Ryan KG, Swinny EE, Markham KR, Winefield C (2002) Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochem 59:23–32

    CAS  Google Scholar 

  • Sahoo A, Sarkar S, Singh RP, Kafatos M, Summers ME (2005) Declining trend of total ozone column over the northern parts of India. Int J Remote Sens 26:3433–3440

    Google Scholar 

  • Sakalauskaite J, Viskelis P, Dambrauskiene E, Sakalauskiene S, Samuoliene G, Brazaityte A, Duchovskis P, Urbonavicien˙e D (2013) The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L. J Sci Food Agric 93:1266–1271. doi:10.1002/jsfa.5879

    CAS  PubMed  Google Scholar 

  • Santos I, Almeida JM, Salema R (1993) Plants of Zea mays L. developed under enhanced UV-B radiation. I. Some ultrastructural and biochemical aspects. J Plant Physiol 141:450–456

    CAS  Google Scholar 

  • Santos I, Fidalgo F, Almeida JM, Salema R (2004) Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Sci 167:925–935

    CAS  Google Scholar 

  • Sasaki M, Takeshita S, Oyanagi T, Miyake Y, Sakata T (2002) Increasing trend of biologically active solar ultraviolet-B irradiance in mid-latitude Japan in the 1990s. Opt Eng 41:3062–3069

    CAS  Google Scholar 

  • Searles PS, Flint SD, Caldwell MM (2001) A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127:1–10

    Google Scholar 

  • Selvakumar V (2008) Ultraviolet-B radiation (280–315 nm) invoked antioxidant defence systems in Vigna unguiculata (L.) Walp. and Crotalaria juncea L. Photosynthetica 46:98–106

    CAS  Google Scholar 

  • Sharma AD, Sharma R (1999) Purification and characterization of UV-B induced phenylalanine ammonia-lyase from rice seedlings. Phytochemistry 49:618–626

    Google Scholar 

  • Shi S-B, Zhu W-Y, Li H-M, Zhou D-W, Han F, Zhao X-Q, Tang Y-H (2004) Photosynthesis of Saussurea superba and Gentiana straminea is not reduced after long-term enhancement of UV-B radiation. Environ Exp Bot 51:75–83

    CAS  Google Scholar 

  • Shiu C-T, Lee T-M (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865

    CAS  PubMed  Google Scholar 

  • Singh RP, Sarkar S, Singh A (2002) Effect of El Nino on inter-annual variability of ozone during the period 1978–2000 over the Indian sub-continent and China. Int J Remote Sens 23:2449–2456

    Google Scholar 

  • Singh S, Kumari R, Agrawal M, Agrawal SB (2009a) Modification of growth and yield responses of Amaranthus tricolor L. to sUV-B under varying mineral nutrient supply. Sci Hortic 120:173–180

    CAS  Google Scholar 

  • Singh S, Mishra S, Kumari R, Agrawal SB (2009b) Response of supplemental ultraviolet-B and nickel on pigments, metabolites, and antioxidants of Pisum sativum L. cv Arkel. J Environ Biol 30:677–684

    CAS  PubMed  Google Scholar 

  • Singh S, Kumari R, Agarawal M, Agrawal SB (2011) Modification in growth, biomass and yield of radish under supplemental UV-B at different NPK levels. Ecotoxicol Environ Saf 74:897–903

    CAS  PubMed  Google Scholar 

  • Smith JL, Burritt DJ, Bannister P (2000) Shoot dry weight, chlorophyll and UV-B absorbing compounds as indicators of plant sensitivity to UV-B radiation. Ann Bot 86:1057–1063

    CAS  Google Scholar 

  • Staxen I, Bornman JF (1994) A morphological and cytological study of Petunia hybrida exposed to UV-B radiation. Physiol Plant 91:735–740

    Google Scholar 

  • Stratmann JW, Stelmach BA, Weller EW, Ryan CA (2000) UVB/UVA radiation activates a 48 kDa myelin basic protein kinase and potentiates wound signaling in tomato leaves. Photochem Photobiol 71:116–123

    CAS  PubMed  Google Scholar 

  • Takeuchi Y, Fukomuto R, Kasahara H, Sakaki T (1995) Peroxidation of lipid and growth inhibition induced by UV-B irradiation. Plant Cell Rep 14:566–570

    CAS  PubMed  Google Scholar 

  • Takeuchi Y, Inoue T, Takemura K, Hada M, Takahashi S, Ioki M, Nakajima N, Kondo N (2007) Induction and inhibition of cyclobutane pyrimidine dimer photolyase in etiolated cucumber (Cucumis sativus) cotyledons after ultraviolet irradiation depends on wavelength. J Plant Res 120:365–374

    CAS  PubMed  Google Scholar 

  • Tattini M, Guidi L, Morassi-Bonzi L, Pinelli P, Remorini D, Degl Innocenti E, Giordano C, Massai R, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    CAS  Google Scholar 

  • Teranishi M, Iwamatsu Y, Hidema J, Kumagai T (2004) Ultraviolet-B sensitivities in Japanese lowland rice cultivars: cyclobutane pyrimidine dimer photolyase activity and gene mutation. Plant Cell Physiol 45:1845–1856

    Google Scholar 

  • Tevini M, Teramura AH (1989) UV-B effects in terrestrial plants. Photochem Photobiol 50:479–487

    CAS  Google Scholar 

  • Tevini M, Iwanzik W, Teramura AH (1983) Effects of UV-B radiation on plants during mild water stress, II Effects on growth, protein and flavonoid content. Z Pflanzenphysiol 110:459–467

    CAS  Google Scholar 

  • Tosserams M, Rozema J (1995) Effects of ultraviolet-B radiation (UV-B) on growth and physiology of the dune grassland species Calamagrostis epigeios. Environ Pollut 89:209–214

    CAS  PubMed  Google Scholar 

  • Tosserams M, Magendans GWH, Rozema J (1997) Differential effects of elevated ultraviolet-B radiation on plant species from a dune grassland ecosystem. Plant Ecol 128:266–283

    Google Scholar 

  • Tripathi R, Sarkar A, Rai SP, Agrawal SB (2011) Supplemental ultraviolet-B and ozone, impact on antioxidants, proteome and genome of linseed (Linum usitatissimum L. cv Padmimi). Plant Biol 13:93–104

    CAS  PubMed  Google Scholar 

  • Tsormpatsidis E, Henbest RGC, Davis FJ, Battey NH, Hadley P, Wagstaffe A (2008) UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films. Environ Exp Bot 63:232–239

    CAS  Google Scholar 

  • Turtola S, Sallas L, Holopainen JK, Jalkunen-Tiitto R, Kainulainen P (2006) Long term exposure to enhanced UV-B radiation has no significant effect on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings. Environ Exp Bot 56:80–86

    Google Scholar 

  • UNEP, United Nations Environment Programme (2005) Environmental Effects Assessment Panel. Photochem Photobiol Sci 4:177–184

    Google Scholar 

  • Urban O, Tuma I, Holub P, Marek MV (2006) Photosynthesis and growth response of Calamagrostis arundinacea and C. villosa to enhanced UV-B radiation. Photosynthetica 44:215–220

    CAS  Google Scholar 

  • Weatherhead B, Tanskanen A, Stevermer A (2005) Ozone and ultraviolet radiation. In: Symon C, Arris L, Heal B (eds) Arctic climate impact assessment scientific report. Cambridge University Press, New York, pp 151–182

    Google Scholar 

  • Wilson MI, Greenberg BM (1993) Specificity and photomorphogenic nature of ultraviolet-B induced cotyledon curling in Brassica napus L. Plant Physiol 102:671–677

    PubMed Central  CAS  PubMed  Google Scholar 

  • WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion (2007) Global ozone research and monitoring project – report no. 50, Geneva, Switzerland, 572 pp

    Google Scholar 

  • Wulff A, Ahonen J, Kärenlampi L (1996) Cell ultrastructural evidence of accelerated ageing of Norway spruce needles in industrial areas. New Phytol 133:553–561

    CAS  Google Scholar 

  • Xu C, Natarajan S, Sullivan JH (2008) Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. Environ Exp Bot 63:39–48

    CAS  Google Scholar 

  • Yang S-H, Wang Li-J, Li S-H, Duan W, Loescher W, Liang Z-C (2007) The effects of UV-B radiation on photosynthesis in relation to Photosystem II photochemistry, thermal dissipation and antioxidant defenses in winter wheat (Triticum aestivum L.) seedlings at different growth temperatures. Funct Plant Biol 34:907–917

    CAS  Google Scholar 

  • Yannarelli GG, Gallego SM, Tomaro ML (2006) Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons. Environ Exp Bot 56:174–181

    CAS  Google Scholar 

  • Yao X, Liu Q (2007) Changes in photosynthesis and antioxidant defenses of Picea asperata seedlings to enhanced ultraviolet-B and to nitrogen supply. Physiol Plant 129:364–374

    CAS  Google Scholar 

  • Yao Y, Xuan ZG, Li Y, He Y, Helena K, Li C (2006) Effects of ultraviolet-B radiation on crop growth, development, yield and leaf pigment concentration of tartary buckwheat (Fagopyrum tataricum) under field conditions. Eur J Agron 25:215–222

    CAS  Google Scholar 

  • Yao Y, Xuan Z, He Y, Lutts S, Korpelainen H, Li C (2007) Principal component analysis of intraspecific responses of tartary buckwheat to UV-B radiation under field conditions. Environ Exp Bot 61:237–245

    CAS  Google Scholar 

  • Yao YN, Yang YQ, Li Y, Lutts S (2008) Intraspecific responses of Fagopyrum esculentum to enhanced ultraviolet B radiation. Plant Growth Regul 56:297–306

    CAS  Google Scholar 

  • Zepp RG, Erickson Iii DJ, Paul ND, Sulzberger B (2011) Effects of solar UV radiation an climate change on biogeochemical cycling: interactions and feedbacks. Photochem Photobiol Sci 10:261–279

    CAS  PubMed  Google Scholar 

  • Zheng Y, Gao W, Slusser JR, Grant RH, Wang C (2003) Yield and yield formation of field winter wheat in response to supplemental solar ultraviolet-B radiation. Agric For Meteorol 120:279–283

    Google Scholar 

Download references

Acknowledgement

The author Rima Kumari acknowledges Dr. D.S. Kothari Post Doctoral fellowship from University Grant Commission for financial support. Thanks are also due to UGC, New Delhi for providing research grant "Precision stressing by UV-B radiation to improve the quality of Coriander and Trigonella, Ref. F. No. 41-389/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumari, R., Prasad, M.N.V., Agrawal, S.B. (2015). Growth and Defense Metabolism of Plants Exposed to Ultraviolet-B Radiation. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-16742-8_8

Download citation

Publish with us

Policies and ethics