Skip to main content

Phytoremediation Crops and Biofuels

  • Chapter
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 17))

Abstract

Environmental decontamination is an integral part of sustainable development. In recent years there has been growing interest in using plants for decontamination. On the other hand, water, soil and air are increasingly contaminated. Large amounts of toxic waste have been dispersed in thousands of contaminated sites spread all over the globe. These pollutants belong to two main classes: inorganic and organic. The challenge is to develop innovative and cost-effective solutions to decontaminate polluted environment. Phytoremediation is emerging as an invaluable tool for environmental cleanup. Various strategies are being applied to reduce the accumulation of toxic metals in plants. Cultivation of edible crops in contaminated soils is a subject of human health concern if the contaminant concentration in the edible parts of crops plant exceed the permissible level. In such cases non-food crop production viz. value chain and value additions appears profitable. In this review: (1) the contamination due to industrial effluents in peri urban region of greater Hyderabad, and (2) the strategies to use contaminated soil and water for raising phytoremediation crops, and generation of value products. Crops and products include medicinal and aromatic plants, ornamental plants, biofuels, tree crops, fiber crops, dyes, and plants for carbon sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad M, Noguera P, Burés S (2001) National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresour Technol 77:197–200. http://dx.doi.org/10.1016/S0960-8524(00)00152-8

  • Abbasi SA, Nipaney PC, Panholzer MB (1991) Biogas production from the aquatic weed pistia (Pistia stratiotes). Bioresour Technol 37:211–214. http://dx.doi.org/10.1016/0960-8524(91)90185-M

  • Abd El-Kader AA, Hussein MM, Alva AK (2012) Response of Jatropha on a clay soil to different concentrations of micronutrients. Am J Plant Sci 3:1376–1381. doi:10.4236/ajps.2012.310166

    Google Scholar 

  • Abdelraheem WHM, Rabia MKM, Ismail NM (2012) Evaluation of copper speciation in the extract of Eichhornia crassipes using reverse and forward/CLE voltammetric titrations. Arab J Chem, http://dx.doi.org/10.1016/j.arabjc.2012.04.013, doi:10.1016/j.arabjc.2012.04.013#doilink

  • Abdul RM, Mutnuri L, Dattatreya PJ, Mohan DA (2012) Assessment of drinking water quality using ICP-MS and microbiological methods in the Bholakpur area, Hyderabad, India. Environ Monit Assess 184:1581–1592. doi:10.1007/s10661-011-2062-2

    CAS  PubMed  Google Scholar 

  • Abhilash PC, Yunus M (2011) Can we use biomass produced from phytoremediation? Biomass Bioenergy 35:1371–1372. http://dx.doi.org/10.1016/j.biombioe.2010.12.013

  • Abioye OP, Agamuthu P, Abdul Aziz A (2010) Phytoaccumulation of zinc and iron by Jatropha curcas grown in used lubricating oil-contaminated soil. Malays J Sci 29(3):207–213

    CAS  Google Scholar 

  • Abioye OP, Agamuthu P, Abdul Aziz AR (2012) Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus. Biodegradation 23:277–286

    CAS  PubMed  Google Scholar 

  • Abu-Darwish MS (2009) Essential oils yield and heavy metals content of some aromatic medicinal plants grown in Ash-Shoubak region, south of Jordan. Adv Environ Biol 3(3):296–301

    CAS  Google Scholar 

  • Abu-Darwish MS, Al-Fraihat AH, Al-Dalain SYA, Afifi FU, Al-Tabbal JA (2011) Determination of essential oils and heavy metals accumulation in Salvia officinalis cultivated in three intra-raw spacing in Ash-Shoubak. Jordan Int J Agric Biol 13:981–985

    CAS  Google Scholar 

  • Acharya S, Sharma DK, Joshi HC (2012) Phytotoxicity of zinc, chromium (VI) and cadmium in purging nut (Jatropha curcas) seedlings grown in hydroponics. Indian J Agric Sci 82(8):667–671

    CAS  Google Scholar 

  • Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe OF, Soretire AA (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut 207:195–201

    CAS  Google Scholar 

  • Adewole MB, Sridhar MKC, Adeoye GO (2010) Removal of heavy metals from soil polluted with effluents from a paint industry using Helianthus annuus L. and Tithonia diversifolia (Hemsl.) as influenced by fertilizer applications. Bioremediation J 14(4):169–179

    CAS  Google Scholar 

  • Agamuthu P, Abioye OP, Abdul Aziz A (2010) Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J Hazard Mater 179:891–894. http://dx.doi.org/10.1016/j.jhazmat.2010.03.088

  • Agbogidi OM, Eruotor PG (2012) Morphological changes due to spent engine oil contamination and its heavy metal components of Jatropha curcas Linn seedlings. International conference on bioscience, biotechnology and healthcare sciences (ICBBHS ’2012), 14–15 December, Singapore, pp 88–93

    Google Scholar 

  • Agbogidi OM, Mariere AE, Ohwo OA (2013) Metal concentration in plant tissues of Jatropha curcas L grown in crude oil contaminated soil. J Sustain For 32(4):404–411

    Google Scholar 

  • Aggarwal H, Goyal D (2007) Phytoremediation of some heavy metals by agronomic crops. Dev Environ Sci 5:79–98. http://dx.doi.org/10.1016/S1474-8177(07)05005-X

  • Agunbiade FO, Olu-Owolabi BI, Adebowale KO (2009) Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water. Bioresour Technol 100:4521–4526

    CAS  PubMed  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern.& Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Ahmadpour P, Nawi AM, Abdu A, Abdul-Hamid H, Singh DK, Hassan A, Majid NM, Jusop S (2010) Uptake of heavy metals by Jatropha curcas planted in soils containing sewage sludge. Am J Appl Sci 7(10):1291–1299

    Google Scholar 

  • Ahmed A, Prasad Rao TVD, Reddy N, Satyanarayanan M (2011) Hydrogeochemistry of ground water around municipal solid waste dumping site in Hyderabad city, India. Oriental J Chem 27:1665–1670

    CAS  Google Scholar 

  • Aibibu N, Liu Y, Zeng G, Wanga X, Chen B, Song H, Xua L (2010) Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour Technol 101:6297–6303

    CAS  PubMed  Google Scholar 

  • Al-Farraj AS, Al-Wabel MI (2007) Heavy metals accumulation of some plant species grown on mining area at Mahad AD’Dahas, Saudi Arabia. J Appl Sci 7(8):1170–1175

    CAS  Google Scholar 

  • Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere 72:1387–1392

    CAS  PubMed  Google Scholar 

  • Alia PKVSK, Saradhi PP (1995) Effect of Zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39(1):45–47

    CAS  Google Scholar 

  • Alvarado S, Guédez M, Lué-Merú M, Graterol N, Anzalone A, Arroyo CJ (2008) Arsenic removal from water by bioremediation with the aquatic plants water hyacinth (Eichornia crassipes) and lesser duckweed (Lemna minor). Biores Technol 99:8436–8440

    CAS  Google Scholar 

  • Amirmoradi S, Moghaddam PR, Koocheki A, Danesh S, Fotovat A (2012) Effect of cadmium and lead on quantitative and essential oil traits of peppermint (Mentha piperita L.). Notulae Scientia Biologicae 4(4):101–109

    CAS  Google Scholar 

  • Andra SS, Datta R, Sarkar D, Saminathan SKM, Mullens CP, Bach SBH (2009) Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ Pollut 157:2173–2183

    CAS  PubMed  Google Scholar 

  • Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SBH (2010) Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil 326:171–185

    CAS  Google Scholar 

  • Andra SS, Sarkar D, Saminathan SKM, Datta R (2011) Exchangeable lead from prediction models relates to vetiver lead uptake in different soil types. Environ Monit Assess 183:571–579

    CAS  PubMed  Google Scholar 

  • Angelova VR, Ivanova RV, Ivanov KI, Perifanova-Nemska MN, Uzunova GI (2012) Potential of sunflower (Helianthus annuus l.) for phytoremediation of soils contaminated with heavy metals. BALWOIS 2012 - Ohrid, Republic of Macedonia – 28 May, 2 June 2012

    Google Scholar 

  • Angin I, Turan M, Ketterings QM, Cakici A (2008) Humic acid addition enhances B and Pb phytoextraction by Vetiver Grass (Vetiveria zizanioides (L.) Nash). Water Air Soil Pollut 188:335–343

    CAS  Google Scholar 

  • Antiochia R, Campanella L, Ghezzi P, Movassaghi K (2007) The use of vetiver for remediation of heavy metal soil contamination. Anal Bioanal Chem 388:947–956

    CAS  PubMed  Google Scholar 

  • Aparna C, Saritha P, Himabindu V, Bhandari A, Anjaneyulu Y (2010) Evaluation of bioremediation effectiveness on sediments contaminated with industrial wastes. Int J Environ Sci 1:607–620

    CAS  Google Scholar 

  • Araiza-Arvilla J, Jáuregui-Rincón J, Alférez-Chávez JM, Ponce-Andrade I (2006) Use of hydroponic sunflowers (Helianthus annuus L.) farming system for lead and chromium laying up. In “Protection 2006”, July

    Google Scholar 

  • Arias J, Peralta-Videa J, Ellzeyj VMN, Minghua R, Mokgalaka-Matlalan NS, Castillo-Michel H, Gardea-Torresdey J (2010) Plant growth and metal distribution In tissues of Prosopis juliflora-velutina grown on Chromium contaminated soil in the Presence of glomus deserticola. Environ Sci Technol 44:7272–7279

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ashfaq M, Ali S, Hanif MA (2009) Bioaccumulation of cobalt in silkworm (Bombyx mori L.) in relation to mulberry, soil and wastewater metal concentrations Process. Biochemistry 44:1179–1184

    CAS  Google Scholar 

  • Atiq-Ur-Rehman S, Iqbal MZ (2008) level of heavy metals in the foliage of naturally growing plants collected from korangi and landhi industrial areas of Karachi city, Pakistan. Pak J Bot 40(2):785–789

    CAS  Google Scholar 

  • Awotoye OO, Adewole MB, Salami AO, Ohiembor MO (2009) Arbuscular mycorrhiza contribution to the growth performance and heavy metal uptake of Helianthus annuus Linn. in pot culture. Afr J Environ Sci Technol 3(6):157–163

    CAS  Google Scholar 

  • Awwokunmi EE, Asaolu SS, Ajayi OO, Adebayo OA (2012) The role of EDTA on heavy metals Phytoextraction by Jatropha gossypifolia grown on soil collected from dumpsites in Ekiti state Nigeria. Br J Environ Climate Change 2(2):153–162

    Google Scholar 

  • Azad HN, Shiva AH, Malekpour R (2011) Toxic effects of lead on growth and some biochemical and ionic parameters of sunflower (Helianthus annuus L) seedlings. Current Res J Biol Sci 3(4):398–403

    CAS  Google Scholar 

  • Azhar N, Ashraf MY, Hussain M, Hussain F (2006) phytoextraction of lead (Pb) by edta application through sunflower (Helianthus annuus L.) cultivation: seedling growth studies. Pak J Bot 38(5):1551–1560

    Google Scholar 

  • Azhar N, Ashraf MY, Hussain M, Ashraf M, Ahmed R (2009) EDTA-induced improvement in growth and water relations of sunflower (Helianthus annuus L) plants grown in lead contaminated medium. Pak J Bot 41(6):3065–3074

    CAS  Google Scholar 

  • Aziz EE, Gad N, Khaled SM (2011) Effect of cobalt on growth and chemical composition of peppermint plant grown in newly reclaimed soil. Aust J Basic Appl Sci 5(11):628–633

    CAS  Google Scholar 

  • Babu AG, Shim J, Shea PJ, Oh B-T (2014) Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with sorghum-sudangrass. Ecol Eng 69:186–191. http://dx.doi.org/10.1016/j.ecoleng.2014.03.055

  • Bada BS, Kalejaiye ST (2010) Response of Kenaf (Hibiscus Cannabinus L.) grown in different soil textures and lead concentrations. Res J Agric Biol Sci 6(5):659–664

    CAS  Google Scholar 

  • Bali R, Siegele R, Harris AT (2010) Phytoextraction of Au: uptake, accumulation and cellular distribution in Medicago sativa and Brassica juncea. Chem Eng J 156:286–297

    CAS  Google Scholar 

  • Bañuelos GS (2002) Irrigation of broccoli and canola with boron and selenium-laden effluent. J Environ Qual 31:1802–1808

    PubMed  Google Scholar 

  • Bañuelos GS (2006) Phytoproducts may be essential for sustainability and implementation of phyto-remediation. Environ Pollut 144:19–23. http://dx.doi.org/10.1016/j.envpol.2006.01.015

  • Bañuelos GS, Cardon G, Mackey B, Ben-Asher J, Wu L, Beuselinck P, Akohoueand S, Zambrzuski S (1993) Boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species. J Environ Qual 22(4):786–792

    Google Scholar 

  • Bañuelos GS, Ajwa HA, Mackey B, Wu L, Cook C, Akohoue S, Zambruzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26(3):639–646

    Google Scholar 

  • Bareen F, Tahira SA (2011) Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: field trials for toxic metal cleanup using Suaeda fruticosa. J Hazard Mater 186:443–450

    CAS  Google Scholar 

  • Baroni F, Boscagli A, Di Lella LA, Protano G, Riccobono F (2004) Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). J Geochem Explor 81:1–14

    CAS  Google Scholar 

  • Baruah S, Hazarika KK, Sarma KP (2012) Uptake and localization of Lead in Eichhornia crassipes grown within a hydroponic system. Adv Appl Sci Res 3(1):51–59

    CAS  Google Scholar 

  • Bauddh K, Singh RP (2012a) Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicol Environ Safety 85:13–22

    CAS  PubMed  Google Scholar 

  • Bauddh K, Singh RP (2012b) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytoremediation 14(8):772–785

    CAS  PubMed  Google Scholar 

  • Baunthiyal M, Sharma V (2012) Phytoremediation of fluoride contaminated water and soil: a search for fluoride hyperaccumulators. J Agric Technol 8(6):1965–1978

    CAS  Google Scholar 

  • Bhakta JN, Munekage Y (2008) Role of ecosystem components in Cd removal process of aquatic ecosystem. Ecol Eng 32:274–280

    Google Scholar 

  • Bhat R, Kiran K, Arun AB, Karim AA (2010) Determination of mineral composition and heavy metal content of some nutraceutically valued plant products. Food Anal Methods 3:181–187

    Google Scholar 

  • Bi X, Feng X, Yang Y, Li X, Sin GPY, Qiu G, Qian X, Li F, He T, Li P, Liu T, Fu Z (2007) Heavy metals in an impacted wetland system: a typical case from south western China. Sci Total Environ 387:257–268

    CAS  PubMed  Google Scholar 

  • Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus). Chemosphere 83(3):318–326

    CAS  PubMed  Google Scholar 

  • Bitterli C, Bañuelos GS, Schulin R (2010) Use of transfer factors to characterize uptake of selenium by plants. J Geochem Explor 107:206–216

    CAS  Google Scholar 

  • Bjelková M, Genčurová V, Griga M (2011) Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils. Ind Crops Products 33:761–774. http://dx.doi.org/10.1016/j.indcrop.2011.01.020

  • Blagojević N, Damjanović-Vratnica B, Vukašinović-Pešić V, Đurović D (2009) Heavy metals content in leaves and extracts of wild-growing Salvia officinalis from Montenegro. Polish J Environ Stud 18(2):167–173

    Google Scholar 

  • Bonanno G (2012) Arundo donax as a potential biomonitor of trace element contamination in water and sediment. Ecotoxicol Environ Saf 80:20–27. http://dx.doi.org/10.1016/j.ecoenv.2012.02.005

  • Bonanno G, Cirelli GL, Toscano A, Giudice RL, Pavone P (2013) Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: potential applications in agriculture and forestry? Science Total Environ 452–453(1):349–354. http://dx.doi.org/10.1016/j.scitotenv.2013.02.048

  • Bose S, Jain A, Rai V, Ramanathan AL (2008) Chemical fractionation and translocation of heavy metals in Canna indica L. grown on industrial waste amended soil. J Hazard Mater 160:187–193

    CAS  PubMed  Google Scholar 

  • Bosiacki M (2008) Accumulation of cadmium in selected species of ornamental plants. Acta Sci Pol Hortorum Cultus 7:21–31

    Google Scholar 

  • Bosiacki M (2009a) Phytoextraction of cadmium and lead by selected cultivars of Tagetes erecta L. Part I. Contents of cd and pb in plants. Acta Sci Pol Hortorum Cultus 8:3–13

    Google Scholar 

  • Bosiacki M (2009b) Phytoextraction of cadmium and lead by selected cultivars of Tagetes erecta L. Part II. Contents of cd and pb in plants. Acta Sci Pol Hortorum Cultus 8:15–26

    Google Scholar 

  • Bres P, Crespo D, Rizzo P, La Rossa R (2012) Capacity of the macrophytes Lemna minor and Eichhornia crassipes to remove nickel. RIA/Research, April (in press)

    Google Scholar 

  • Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48:8328–8334

    CAS  Google Scholar 

  • Brown JE, Khodr H, Hider RC, Rice-Evans CA (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem J 330:1173–1178

    Google Scholar 

  • Busuioc G, David I, Stirbu C, Iliescu N, Mocanu V (2009) Contributions to determination the affinity for heavy metals accumulation of some organs at Helianthus annuus L. Lucrări Ştiinţifice 52, seria Agronomie, pp 623–628

    Google Scholar 

  • Buta E, Paulette L, Mihăiescu T, Buta M, Cantor M (2011) The influence of heavy metals on growth and development of Eichhornia crassipes species, cultivated in contaminated water. Not Bot Hortic Agrobo 39(2):135–141

    CAS  Google Scholar 

  • Butler RA (2006) Why is oil palm replacing tropical rainforests? Why are biofuels fueling deforestation? See also: http://news.mongabay.com/2006/0425-oil_palm.htmlS0425

  • Caldelas C, Iglesia-Turiño S, Araus JL, Bort J, Febrero A (2009) Physiological responses of Eichhornia crassipes (Mart.) Solms to the combined exposure to excess nutrients and Hg. Braz Soc Plant Physiol 21(1):01–12

    Google Scholar 

  • Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Trans Am Soc Agric Eng [ASAE] 44:1429–1436

    CAS  Google Scholar 

  • Cao A, Carucci A, Lai T, Colla PL, Tamburini E (2007) Effect of biodegradable chelating agents on trace metals phytoextraction with Mirabilis jalapa and its associated bacteria. Eur J Soil Biol 43:200–206

    CAS  Google Scholar 

  • Cao L, Jiang M, Zeng Z, Dub A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 71:1769–1773

    CAS  PubMed  Google Scholar 

  • Capuana M (2011) Heavy metals and woody plants – biotechnologies for phytoremediation. Biogeosci Forest 4:7–15

    Google Scholar 

  • Carlson KD, Cunningham RL, Garcia WJ, Bagby MO, Kwolek WF (1982) Performance and trace metal content of Crambe and kenaf grown on sewage sludge-treated stripmine land. Environ Pollut Ser A, Ecol Biol 29:145–161

    CAS  Google Scholar 

  • Carrier M, Loppinet-Serani A, Absalon C, Marias F, Aymonier C, Mench M (2011) Conversion of fern (Pteris vittata L.) biomass from a phyto-remediation trial in sub- and supercritical water conditions. Biomass Bioenergy 35:872–883

    CAS  Google Scholar 

  • Carrier M, Loppinet-Serani A, Absalon C, Aymonier C, Mench M (2012) Degradation pathways of holocellulose, lignin and alpha-cellulose from Pteris vittata fronds in sub- and super critical conditions. Biomass Bioenergy 43:65–71

    CAS  Google Scholar 

  • Cassina L, Tassi E, Pedron F, Petruzzelli G, Ambrosini P, Barbafieri M (2012) Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. J Hazard Mater 231–232:36–42

    PubMed  Google Scholar 

  • Cecal A, Popa K, Caraus I, Cracium I (2003) Uranium and thorium uptake on hydrophilic plants. In: Merkel BJ, Planer-Friederich B, Wolkersdorfer C (eds) Uranium in the aquatic environment. Springer, Heidelberg, pp 479–488

    Google Scholar 

  • Chaiyarat R, Suebsima R, Putwattana N, Kruatrachue M, Pokethitiyook P (2011) Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in Cd/Zn-contaminated soil. Water Air Soil Pollut 214:383–392

    CAS  Google Scholar 

  • Chakravarty B, Srivastava S (1992) Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus. Mutat Res 283(4):287–294

    CAS  PubMed  Google Scholar 

  • Chami ZA, Amer N, Smets K, Yperman J, Carleer R, Dumontet S, Vangronsveld J (2014) Evaluation of flash and slow pyrolysis applied on heavy metal contaminated Sorghum bicolor shoots resulting from phytoremediation. Biomass Bioenergy 63:268–279. http://dx.doi.org/10.1016/j.biombioe.2014.02.027

  • Chand S, Pandey A, Patra DD (2012) Influence of nickel and lead applied in combination with vermiompost on growth and accumulation of heavy metals by Mentha arvensis Linn. cv. ‘Kosi’. Indian J Nat Prod Resour 3(2):256–261

    CAS  Google Scholar 

  • Chandra S, Misra V, Singh R, Lello Z (2011) EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture. Plant Soil 347(1/2):231

    Google Scholar 

  • Chandran S, Niranjana V, Bennyjoseph (2012) Accumulation of heavy metals in wastewater irrigated crops in Madurai, India. J Environ Res Dev 6(3):432–438

    CAS  Google Scholar 

  • Chantachon S, Kruatrachue M, Pokethitiyook P, Upatham S, Tantanasarit S, Soonthornsarathool V (2004) Phytoextraction and accumulation of lead from contaminated soil by vetiver grass: laboratory and simulated field study. Water Air Soil Pollut 154:37–55

    CAS  Google Scholar 

  • Chaudhary DR, Ghosh A, Chikara J, Patolia JS (2009) Elemental content of three plant species growing on abandoned fly ash landfill. Indian Forester 135:393–402

    CAS  Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation-focusing on accumulator plants that remediate metal-contaminated soils. Aust J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Chaves LHG, de Mesquita EF, de Araujo DL, de França CP (2010) Acúmulo e Distribuição de Cobre e Zinco em Mamoneira Cultivar BRS Paraguaçu e Crescimento da Planta. Engenharia Ambiental: Pesquisa e Tecnologia 7(3):263–277

    Google Scholar 

  • Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21–28

    CAS  PubMed  Google Scholar 

  • Chen KF, Yeh TY, Lin CF (2012) Phytoextraction of Cu, Zn, and Pb enhanced by Chelators with Vetiver (Vetiveria zizanioides ): hydroponic and pot experiments. ISRN Ecol 2012:1–12

    Google Scholar 

  • Chen HM, Zheng CR, Tu C, Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    CAS  PubMed  Google Scholar 

  • Cheng SF, Choo YM, Ma AN, Chuah CH (2004) Kinetics study on transesterification of Palm oil. J Oil Palm Res 16(2):19–29

    Google Scholar 

  • Chintakovid W, Visoottiviseth P, Khokiattiwong S, Lauengsuchonkul S (2008) Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand. Chemosphere 70:1532–1537, ISSN 0045–6535, http://dx.doi.org/10.1016/j.chemosphere.2007.08.031

    CAS  PubMed  Google Scholar 

  • Chigbo C, Batty L, Bartlett R (2013) Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere 90(10):2542–2548. doi:10.1016/j

    CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    CAS  PubMed  Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere 60:1365–1375

    CAS  PubMed  Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2006) Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresour Technol 97:158–170

    CAS  PubMed  Google Scholar 

  • Chong CW, Chu LM (2007) Growth of vetivergrass for cutslope landscaping: effects of container size and watering rate. Urban Forestry Urban Greening 6:135–141

    Google Scholar 

  • Chua H (1998) Bio-accumulation of environmental residues of rare earth elements in aquatic flora Eichhornia crassipes (Mart.) Solms in Guangdong Province of China. Sci Total Environ 214:79–85

    CAS  Google Scholar 

  • Claudia, D’Innocenzo M, Jairo F (2012) Prospects of Miscanthus x giganteus for PAH phytoremediation: A microcosm study. Ind Crops Prod 36(1):276–281. ISSN 0926–6690, http://dx.doi.org/10.1016/j.indcrop.2011.10.030

  • Clemente R, Walker DJ, Bernal MP (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): the effect of soil amendments. Environ Pollut 138:46–58

    CAS  PubMed  Google Scholar 

  • Clemente R, Almela C, Bernal MP (2006) A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ Pollut 143:397–406. http://dx.doi.org/10.1016/j.envpol.2005.12.011

  • Conesa HM, Evangelou MW, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? The Scientific World Journal Volume 2012, Article ID 173829, 10 pages doi:10.1100/2012/173829

  • Cooley TN, Martin DF (1979) A preliminary study of metal distribution in three water hyacinth biotypes. Water Res 13(4):343–348

    CAS  Google Scholar 

  • Coscione AR, Berton RS (2009) Barium extraction potential by mustard, sunflower and castor bean. Sci Agric (Piracicaba, Braz.) 66(1):59–63

    Google Scholar 

  • Cutright T, Gunda N, Kurt F (2010) Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Int J Phytoremediation 12(6):562–573

    CAS  PubMed  Google Scholar 

  • Dalla Vecchia F, Rocca NL, Moro I, De Faveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338

    CAS  Google Scholar 

  • Dan TV, Raj KS, Saxena PK (2000) Metal tolerance of scented geranium (Pelargonium sp. ‘Frensham’): effects of cadmium and nickel on chlorophyll fluorescence kinetics. Int J Phytoremediation 2:91–104

    CAS  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11:664–691

    CAS  PubMed  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Fostert N (2011) Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils. Int J Phytoremediation 13(1):47–60

    CAS  PubMed  Google Scholar 

  • Darnoko D, Cheryman M (2000) Kinetics of palm oil transesterification in a batch reactor. J Am Oil Chem Soc 77(12):1263–1267

    Google Scholar 

  • Das S, Jana BB (1999) Dose-dependent uptake and Eichhornia-induced elimination of cadmium in various organs of the freshwater mussel, Lamellidens marginalis (Linn.). Ecol Eng 12:207–229

    Google Scholar 

  • Das S, Jana BB (2004) Distribution pattern of ambient cadmium in wetland ponds distributed along an industrial complex. Chemosphere 55:175–185

    CAS  PubMed  Google Scholar 

  • Dasaram B, Satyanarayanan M, Sudarshan V, Keshav Krishna A (2011) Assessment of soil contamination in Patancheru Industrial Area, Hyderabad, Andhra Pradesh, India. Res J Environ Earth Sci 3:214–220

    CAS  Google Scholar 

  • Datta R, Quispe MA, Sarkar D (2011) Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils. Bull Environ Contam Toxicol 86:124–128

    CAS  PubMed  Google Scholar 

  • de Abreu CA, Coscione AR, Pires AM, Paz-Ferreiro J (2012) Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. J Geochem Explor 123:3–7

    Google Scholar 

  • De AK, Sen AK, Modak DP, Jana S (1985) Studies of toxic effects of Hg(II) on Pistia stratiotes. Water Air Soil Pollut 24:351–360

    CAS  Google Scholar 

  • de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589

    PubMed  Google Scholar 

  • de Oliveira D, Di Luccio M, Faccio C, Dalla Rosa C, Bender JP, Lipke N, Amroginski C, Dariva C, De Oliveira JV (2005) Optimization of alkaline transesterification of soybean oil and castor oil for biodiesel production. Appl Biochem Biotech 122:553–560

    Google Scholar 

  • de Oliveira JA, Cambraia J, de Sousa MV, Oliva MA (2009) Sulphate uptake and metabolism in water hyacinth and salvinia during cadmium stress. Aquat Bot 91:257–261

    Google Scholar 

  • de Sá Salomão AL, Marques M, Severo RG, da Cruz Roque OC (2012) Engineered ecosystem for on-site wastewater treatment in tropical areas. Water Sci Technol 66:213–217

    Google Scholar 

  • de Souza Costa ET, Guilherme LRG, de Melo EEC, Ribeiro BT, dos Santos B, Inácio E, da Costa SE, Faquin V, Hale BA (2012) Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biol Trace Elem Res 145:93–100

    PubMed  Google Scholar 

  • Delgado M, Bigeriego M, Guardiola E (1993) Uptake of Zn, Cr and Cd by water hyacinths. Water Res 27(2):269–272

    CAS  Google Scholar 

  • Delplanque M, Collet S, Del Gratta F, Schnuriger B, Gaucher R, Robinson B (2013) Combustion of Salix used for phytoextraction: the fate of metals and viability of the processes. Biomass Bioenergy 49:160–170

    CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80

    CAS  PubMed  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2009) Lead, zinc and iron (Fe2+) tolerances in wetland plants and relation to root anatomy and spatial pattern of ROL. Environ Exp Bot 65:353–362

    CAS  Google Scholar 

  • Deo B, Nahak G, Sahu RK (2011) Studies on the uptake of heavy metals by selected plant species growing on coal mine spoils in sub-tropical regions of India. J Am Sci 7(1):26–34

    Google Scholar 

  • di Toppi LS, Vurro E, Rossi L, Marabottini R, Musetti R, Careri M, Maffini M, Mucchino C, Corradini C, Badiani M (2007) Different compensatory mechanisms in two metal accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes. Chemosphere 68:769–780

    Google Scholar 

  • Ding ZH, Hu X (2012) Transfer of heavy metals (Cd, Pb, Cu and Zn) from roadside soil to ornamental plants in Nanjing, China. Adv Mater Res 356–360:3051–3054

    Google Scholar 

  • Ding X, Jiang J, Wang Y, Wang W, Ru B (1994) Bioconcentration of cadmium in water hyacinth (Eichhornia crassipes) in relation to thiol group content. Environ Pollut 84:93–96

    CAS  PubMed  Google Scholar 

  • do Nascimento CWA, Amarasiriwardena D, Xing B (2006) Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut 140:114–123. doi:10.1016/j.jhazmat.2010.03.088

  • Dowling DN, Doty SL (2009) Improving phyto-remediation through biotechnology. Curr Opin Biotechnol 20:204–206

    CAS  PubMed  Google Scholar 

  • Dwivedi S, Srivastava S, Mishra S, Dixit B, Kumar A, Tripathi RD (2008) Screening of native plants and algae growing on fly-ash affected areas near National Thermal Power Corporation, Tanda, Uttar Pradesh, India for accumulation of toxic heavy metals. J Hazard Mater 158(2–3):359–365. ISSN 0304–3894, http://dx.doi.org/10.1016/j.jhazmat.2008.01.081

  • El-Enany AE, Mazen AMA (1996) Isolation of Cd- Binding protein of water hyacinth (Eichhornia crassipes) grown in Nile river water. Water Air Soil Pollut 87:357–362

    CAS  Google Scholar 

  • El Hage R, Chrusciel L, Desharnais L, Brosse N (2010) Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresour Technol 101:9321–9329

    PubMed  Google Scholar 

  • El-Mashad HM, Zhang R, Avena-Bustillos RJ (2008) A two step process for biodiesel production from salmon oil. Biosyst Eng 99:220–227

    Google Scholar 

  • Enache M, Dearden John C, Walker John D (2003) QSAR analysis of metal ion toxicity data in sunflower callus cultures (Helianthus annuus “Sunspot”). QSAR Comb Sci 22:234–240

    CAS  Google Scholar 

  • Espinoza-Quiñones FR, da Silva EA, de Rizzutto MA, Palácio SM, Módenes AN, Szymanski N, Martin N, Kroumov AD (2008) Chromium ions phytoaccumulation by three floating aquatic macrophytes from a nutrient medium. World J Microbiol Biotechnol 24:3063–3070

    Google Scholar 

  • Espinoza-Quiñones FR, Martin N, Stutz G, Tirao G, Palácio SM, Rizzutto MA, Módenes AN, Silva FG Jr, Szymanski N, Kroumov AD (2009) Root uptake and reduction of hexavalent chromium by aquatic macrophytes as assessed by high-resolution X-ray emission. Water Res 43:4159–4166

    PubMed  Google Scholar 

  • Faisal M, Hasnain S (2003) Synergistic removal of Cr (VI) by Eichornia crassipes in conjunction with bacterial strains. Pak J Biol Sci 6(3):264–268

    Google Scholar 

  • Farago ME, Parsons PJ (1994) The effects of various platinum metal species on the water plant Eichhornia crassipes (Mart.). Chem Spec Bioavailability 6:1–12

    CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424

    CAS  Google Scholar 

  • Fauziah SH, Wan Siti NurHajar WI, Agamuthu P (2011) Heavy metal accumulation in Ipomoea reptans and Helianthus annuus. Malays J Sci 30(1):36–44

    CAS  Google Scholar 

  • Fayed SE, Abd-El-Shafy HI (1985) Accumulation of Cu, Zn, Cd, and Pb by aquatic macrophytes. Environ Int 11(1):77–87

    CAS  Google Scholar 

  • Figueroa JAL, Wrobel K, Afton S, Caruso JA, Corona JFG, Wrobel K (2008) Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere 70:2084–2091

    CAS  PubMed  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. Soil Sediment Contam Int J 71:415–432

    Google Scholar 

  • Fozia A, Muhammad AZ, Muhammad A, Zafar MK (2008) Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). J Environ Sci (China) 20(12):1475–1480

    CAS  Google Scholar 

  • Frérot H, Lefèbvre C, Gruber W, Collin C, Dos Santos A, Escarre J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil 282:53–65

    Google Scholar 

  • Gabriel IE, Patten T (1994) distribution of copper smelter emissions in Southeastern Arizona – using honey mesquite as a bioindicator. Water Air Soil Pollut 72:67–87

    CAS  Google Scholar 

  • Galeş R, Ivănescu L, Zamfirache MM, Burducea M (2009) Effect of lead on seed germination and seedling development in some medicinal plants (1st note). Analele ştiinţifice ale Universităţii “Al. I. Cuza” Iaşi, Tomul LV, fasc. 2, s.II a. Biologie vegetală, 2009:27–31

    Google Scholar 

  • Gallego S, Benavides M, Tomaro M (2002) Involvement of an antioxidant defence system in the adaptive response to heavy metal ions in Helianthus annuus L. cells. Plant Growth Regul 36:267–273

    CAS  Google Scholar 

  • Gallego SM, Kogan MJ, Azpilicueta CE, Peña C, Tomaro ML (2005) Glutathione-mediated antioxidative mechanisms in sunflower (Helianthus annuus L.) cells in response to cadmium stress. Plant Growth Regul 46:267–276

    CAS  Google Scholar 

  • Ganesh KS, Baskaran L, Rajasekaran S, Sumathi K, Chidambaram ALA, Sundaramoorthy P (2008) Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloids Surf B Biointerfaces 63:159–163

    CAS  PubMed  Google Scholar 

  • Gao S, Yan R, Wu J, Zhang F, Wang S, Chen F (2009) Growth and antioxidant responses in Jatropha curcas cotyledons under lead stress. Z Naturforsch 64(c):859–863

    CAS  Google Scholar 

  • Garcia JS, Grata PL, Azevedo RA, Arruda M (2006) Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. J Agric Food Chem 54:8623–8630

    CAS  PubMed  Google Scholar 

  • Garcia JS, Souza GHMF, Eberlin MN, Arruda MAZ (2009) Evaluation of metal-ion stress in sunflower (Helianthus annuus L.) leaves through proteomic changes. Metallomics 1:107–113

    CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavymetal contaminated soils. Curr Sci 86(4):528–534

    CAS  Google Scholar 

  • Gaïda MM, Landoulsi NS, Rejeb MN, Smiti S (2013) Growth and photosynthesis responses of Rosmarinus officinalis L. to heavy metals at Bougrine mine. Afr J Biotechnol 12(2):150–161

    Google Scholar 

  • Ghavri SV, Singh RP (2012) Growth, biomass production and remediation of copper contamination by Jatropha curcas plant in industrial wasteland soil. J Environ Biol 33:207–214

    CAS  PubMed  Google Scholar 

  • Ghnaya T, Zaier H, Baioui R, Sghaier S, Lucchini G, Sacchi GA, Lutts L, Abdelly C (2013) Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere 90:1449–1454

    CAS  PubMed  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Google Scholar 

  • Giansoldati V, Tassi E, Morelli E, Gabellieri E, Pedron F, Barbafieri M (2012) Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere 87:1119–1125

    CAS  PubMed  Google Scholar 

  • Giri A, Narasu L (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    CAS  PubMed  Google Scholar 

  • Giri AK, Patel RK (2012) Phytoaccumulation potential and toxicity of arsenic ions by Eichhornia Crassipes in Hydroponic System. J Bioremed Biodegrad 3:2–6

    Google Scholar 

  • Giordani C, Cecchi S, Zanchi C (2005) Phytoremediation of soil polluted by nickel using agricultural crops. Environ Manage 36:675–681

    PubMed  Google Scholar 

  • Giovanni A, Pecchioni N, Rabaglio M, Allavena A (1997) Characterization of ornamental Datura plants transformed by Agrobacterium rhizogenes. In Vitro Cell Dev Biol–Plant 33:101–106

    Google Scholar 

  • Glanze W (1996) In: Mosby C (ed) Mosby medical encyclopedia, Revised Edition ed. St. Louis 1996.

    Google Scholar 

  • Govil PK, Reddy GLN, Krishna AK (2001) Contamination of soil due to heavy metals in the Patancheru Industrial Development Area, Andhra Pradesh, India. Environ Geol 41:461–469

    CAS  Google Scholar 

  • Govil PK, Sorlie JE, Murthy NN, Sujatha D, Reddy GLN, Rudolph-Lund K, Krishna AK, Rama Mohan K (2008) Soil contamination of heavy metals in the Katedan Industrial Development Area, Hyderabad, India. Environ Monit Assess 140:313–323

    CAS  PubMed  Google Scholar 

  • Govil PK, Sorlie JE, Sujatha D, Krishna AK, Murthy NN, Rama Mohan K (2012) Assessment of heavy metal pollution in lake sediments of Katedan Industrial Development Area, Hyderabad, India. Environ Earth Sci 66:121–128

    CAS  Google Scholar 

  • Grant TD, Montes-Bayón M, LeDuc D, Fricke MW, Terry N, Caruso JA (2004) Identification and characterization of Se-methyl selenomethionine in Brassica juncea roots. J Chromatogr A 1026:159–166

    CAS  PubMed  Google Scholar 

  • Griga M, Bjelkova M (2013) Flax (Linum usitatissimum L.) and Hemp (Cannabis sativa L.) as fibre crops for phytoextraction of heavy metals: biological, agro-technological and economical point of view. In: Gupta DK (ed) Plant-based remediation processes, soil biology 35, pp 199–237. doi:10.1007/978-3-642-35564-6_11

  • Grison C (2015) Combining phytoextraction and ecocatalysis: a novel concept for greener chemistry, an opportunity for remediation. Environ Sci Pollut Res 22:5589–5591. doi:10.1007/s11356-014-3169-0

  • Gu Chao, Li Lei, He Chiquan (2004) Accumulation of heavy metals by Alternanthera philoxeroides and Commelina communis. J Shanghai Univ (Natural Science Edition) 10(6):626–629

    Google Scholar 

  • Guo W, Hu ZH (2012) Effects of stolon severing on the expansion of Alternanthera philoxeroides from terrestrial to contaminated aquatic habitats. Plant Species Biol 27:46–52

    Google Scholar 

  • Gupta AK, Sinha S (2006) Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability. J Hazard Mater B136:371–378

    Google Scholar 

  • Gupta AK, Sinha S (2007) Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. J Hazard Mater 149:144–150

    CAS  PubMed  Google Scholar 

  • Gupta DK, Srivastava A, Singh VP (2008) EDTA enhances lead uptake and facilitates phytoremediation by vetiver grass. J Environ Biol 29(6):903–906

    CAS  PubMed  Google Scholar 

  • Gurunadha Rao VVS, Yoshida M, Prakash BA, Chandrasekhar SVN, Mahesh Kumar K (2004) Environmental impact of human activities to urban lake sediments: Potentially Toxic Elements (PTEs) contamination in Hussainsagar Lake, Hyderabad. The 11th national symposium on hydrology National Institute of Hydrology, Roorkee (India), 22–23 November

    Google Scholar 

  • Gurunadha Rao VVS, Jain CK, Prakash BA, Mahesh Kumar K (2008) Heavymetal speciation study of sediments in Hussainsagar lake, Greater Hyderabad, India. In: Sengupta M, Dalwani R (eds) 2008. Proceedings of Taal 2007: the 12th world lake conference: 2098–2104

    Google Scholar 

  • Hadad HR, Maine MA, Mufarrege MM, Del Sastre MV, Di Luca GA (2011) Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes. J Hazard Mater 190:1016–1022

    CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  PubMed  Google Scholar 

  • Hameed PS, Shaheed K, Somasundaram SSN (1997) Bioaccumulation of 210Pb in the Kaveri River Ecosystem, India. J Environ Radioactivity 37(1):17–27

    CAS  Google Scholar 

  • Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manage 19:187–192

    Google Scholar 

  • Haque N, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2009) Differential effect of metals/metalloids on the growth and element uptake of mesquite plants obtained from plants grown at a copper mine tailing and commercial seeds. Bioresour Technol 100:6177–6182. http://dx.doi.org/10.1016/j.biortech.2009.06.090

  • Hardy JK, O’Keeffe DH (1985) Cadmium uptake by the water hyacinth: effects of root mass, solution volume, complexers and other metal ions. Chemosphere 14(5):417–426

    CAS  Google Scholar 

  • Hattori H, Kuniyasu K, Chiba K, Chino M (2006) Effect of chloride application and low soil pH on cadmium uptake from soil by plants. Soil Sci Plant Nutr 52:89–94

    CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    CAS  Google Scholar 

  • Hegde RS, Fletcher JS (1996) Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32:2471–2479

    CAS  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170:346–352

    PubMed Central  CAS  PubMed  Google Scholar 

  • Herrera-Rodríguez MB, Pérez-Vicente R, Maldonado JM (2007) Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses. Plant Physiol Biochem 45(1):33–38

    PubMed  Google Scholar 

  • Hinchman RR, Negri MC, Gatliff EG (1995) Phytoremediation: using green plants to clean up contaminated soil, groundwater, and wastewater. Argonne National Laboratory Hinchman, Applied Natural Sciences, Inc, 1995, http://www.treemediation.com/Technical/Phytoremediation_1998.pdf

  • Hiroyuki K, Mio W, Takahiko H (2005) Phytoremediation with Kenaf (Hibiscus cannabinus) for cadmium – contaminated paddy field in Southwest area of Japan. Jpn J Soil Sci Plant Nutr 76(1):27–34

    Google Scholar 

  • Hladun KR, Parker DR, Trumble JT (2011) Selenium accumulation in the floral tissues of two Brassicaceae species and its impact on floral traits and plant performance. Environ Exp Bot 74:90–97

    CAS  Google Scholar 

  • Ho WM, Ang LH, Lee DK (2008) Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. J Environ Sci 20:1341–1347

    CAS  Google Scholar 

  • Hong-Wei Z, Guo-Xin S, Jing-Yao C, Lei Z (2003) Relieving to Hg ~ (2+) injury of Alternanthera philoxeroides antioxidant enzyme system by sprayed 6-BA. Acta Ecologica Sinica 23(2):387–392

    Google Scholar 

  • Hong-Xia Y, Wei L, Bing L, Wei W, Hui-Juan Z, Deng-Yun C (2009) Speciation analysis of cadmium in Indian mustard (Brassica juncea) by size exclusion chromatography-high performance liquid chromatography-inductively coupled plasma mass spectrometry. Chin J Anal Chem 37(10):1511–1514

    Google Scholar 

  • Hristozkova M, Geneva M, Istancheva I, Boychinova M, Djonova E (2015) Aspects of mycorrhizal colonization in adaptation of sweet marjoram (Origanum majorana L.) grown on industrially polluted soil. Turkish J Biol 29:1–8

    Google Scholar 

  • Hsiao KH, Kao PH, Hseu ZY (2007) Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for Phytoextraction. J Hazard Mater 148:366–376

    CAS  PubMed  Google Scholar 

  • Huang H, Ning Yu, Lijun Wang, Gupta DK, Zhenli He, Kai Wang, Zhiqiang Zhu, Xingchu Yan, Tingqiang Li, Xiao-e Yang (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102:11034–11038. http://dx.doi.org/10.1016/j.biortech.2011.09.067

  • Huiping Xiao, Shuiping Cheng, Zhenbin Wu (2010) Microbial community variation in phytoremediation of triazophos by Canna indica Linn. in a hydroponic system. J Environ Sci 22:1225–1231. http://dx.doi.org/10.1016/S1001-0742(09)60242-4

  • Husain Q, Husain M, Kulshrestha Y (2009) Remediation and treatment of organopollutants mediated by peroxidases: a review. Crit Rev Biotechnol 29(2):94–119

    Google Scholar 

  • Hussein FH, Khalifa RKM, El-Mergawi RA, Youssef AA (2006) Utilization of treated municipal wastewater for growing some aromatic plants to produce volatile oils and study its nutritional status in arid region. In: The 2nd international conference on water resources & arid environment, pp 1–16

    Google Scholar 

  • Imada S, Yamanaka N, Tamai S (2009) Effects of salinity on the growth, Na partitioning, and Na dynamics of a salt-tolerant tree, Populus alba L. J Arid Environ 73:245–251. http://dx.doi.org/10.1016/j.jaridenv.2008.10.006

  • Imelouane B, Tahri M, Elbastrioui M, Aouinti F, Elbachiri A (2011) Mineral contents of some medicinal and aromatic plants growing in eastern Morocco. J Mater Environ Sci 2(2):104–111

    CAS  Google Scholar 

  • Iqbal MZ, Sherwani AK, Shafiq M (1999) vegetation characteristics and trace metals (Cu, Zn and Pb) in soils along the super highways near Karachi, Pakistan. Studia Bot Hung 29:79–86, issue3/index.html

    Google Scholar 

  • Jadhav AN, Deo S, Inam F, Ali Z (2012) Biological and chemical sciences elemental analysis (Mineral and Heavy metal) composition of Phyllanthus amarus, Jatropha gossypifolia and Ruta graveolens. Res J Pharm 3(3):43–48

    CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytoremediation: the application OF vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ Eng Manage J 7(5):547–558

    CAS  Google Scholar 

  • Jain CK, Gurunadha Rao VVS, Prakash BA, Mahesh Kumar K, Yoshida M (2010) Metal fractionation study on bed sediments of Hussainsagar Lake, Hyderabad, India. Environ Monit Assess 166:57–67

    CAS  PubMed  Google Scholar 

  • Jaiswal SK, Prakash R, Acharya R, Reddy AVR, Prakash NT (2012) Selenium content in seed, oil and oil cake of Se hyperaccumulated Brassica juncea (Indian mustard) cultivated in a seleniferous region of India. Food Chem 134:401–404

    CAS  Google Scholar 

  • Jamal SN, Iqbal MZ, Athar M (2006) Effect of aluminum and chromium on the growth and germination of mesquite (Prosopis juliflora swartz.) DC. Int J Enviorn Sci Technol 3(2):173–176

    CAS  Google Scholar 

  • Jamil S, Abhilash PC, Singh N, Sharma PN (2009) Jatropha curcas: a potential crop for phytoremediation of coal fly ash. J Hazard Mater 172:269–275. http://dx.doi.org/10.1016/j.jhazmat.2009.07.004

  • Jana S (1988) Accumulation of Hg and Cr by three aquatic species and subsequent changes in several physiological and biochemical plant parameters. Water Air Soil Pollut 38:105–109

    CAS  Google Scholar 

  • Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon sequestration by plants and the prospects of genetic engineering. Bioscience 60:685

    Google Scholar 

  • January MC, Cutright TJ, Keulen HV, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537

    CAS  PubMed  Google Scholar 

  • Jayashree S, Rathinamala J, Lakshmanaperumalsamy P (2011) Determination of heavy metal removal efficiency of Chrysopogon zizanioides (Vetiver) using textile wastewater contaminated soil. J Environ Sci Technol 4(5):543–551

    CAS  Google Scholar 

  • Jayaweera MW, Kasturiarachchi JC, Kularatne RKA, Wijeyekoon SLJ (2008) Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J Environ Manage 87(2008):450–460

    CAS  PubMed  Google Scholar 

  • Jeonng GT, Park DH (2008) Lipase catalyzed transestirification of rapeseed oil for biodiesel production with tert-butanol. Appl Biochem Biotechnol 148:131–139

    Google Scholar 

  • Jian-Guo L, Guang-Hui L, Wan-Chen S, Jia-Kuan X, De-Ke W (2010) Variations in uptake and translocation of Copper, Chromium and Nickel among nineteen wetland plant species. Pedosphere 20(1):96–103

    Google Scholar 

  • Junkang Guo J, Renwei Feng, Yongzhen Ding, Ruigang Wang (2014) Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead. J Environ Manage 141:1–8. http://dx.doi.org/10.1016/j.jenvman.2013.12.039

  • Juwarkar AA, Yadav SK, Kumar P, Singh SK (2008) Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils. Environ Monit Assess 145:7–15

    CAS  PubMed  Google Scholar 

  • Jyothi NVV, Mouli PC, Reddy S, Reddy J (2003) Determination of zinc, copper, lead and cadmium in some medicinally important leaves by differential pulse anodic stripping analysis. J Trace Elem Med Biol 17(2):79–83

    CAS  PubMed  Google Scholar 

  • Kahakachchi C, Boakye HT, Uden PC, Tyson JF (2004) Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. J Chromatogr A 1054:303–312

    CAS  PubMed  Google Scholar 

  • Kaiser J, Galiová M, Novotný K, Červenka R, Reale L, Novotný J, Liška M, Samek O, Kanický V, Hrdlička A, Stejskal K, Adam V, Kizek R (2009) Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B: Atomic Spectrosc 64:67–73. http://dx.doi.org/10.1016/j.sab.2008.10.040

  • Kanchi S, Saraswathi K, Naidu NV (2012) Voltammetric method for manganese analysis in Indian traditional leafy vegetables and medicinal plants collected around Tirupati Town, a famous pilgrim center in India: The Catalytic Hydrogen Wave (CHW) Technique. Food Anal Methods 5:69–81

    Google Scholar 

  • Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86:41–49

    CAS  PubMed  Google Scholar 

  • Katayama H, Banba N, Sugimura Y, Tatsumi M, Kusakari S, Oyama H, Nakahira A (2013) Subcellular compart-mentation of strontium and zinc in mulberry idioblasts in relation to phytoremedia-tion potential. Environ Exp Bot 85:30–35

    CAS  Google Scholar 

  • Keller C, Ludwig C, Davoli F, Wocheke J (2005) Thermal treatment of metal-enriched biomass produced from heavy metal phytoextration. Environ Sci Technol 39:3359–3367

    CAS  PubMed  Google Scholar 

  • Khalifa RKM, Abouziena HF, El-Mergawi RA, Youssef AA (2011) Nutritional status of some aromatic plants grown to produce volatile oils under treated municipal wastewater irrigation. Aust J Basic Appl Sci 5(12):2999–3007

    CAS  Google Scholar 

  • Khan D (2007) Effects of cadmium on germination and seedling growth of Prosopis juliflora (Swartz) DC. – a potential metallophyte. Int J Biol Biotechnol 4(2–3):133–147

    CAS  Google Scholar 

  • Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manage 90:3451–3457

    CAS  PubMed  Google Scholar 

  • Khanam A, Singh BS (2012) Determination of heavy metal ions in selected medicinal plants of Agra. In: Chemistry of phytopotentials: health, energy and environmental perspectives, pp 289–291

    Google Scholar 

  • Khouja HR, Abba S, Lacercat-Didier L, Daghino S, Doillon D, Richaud P et al (2013) OmZnT1 and OmFET, two metal transporters from the metal-tolerant strain Zn of the ericoid mycorrhizal fungus Oidiodendron maius, confer zinc tolerance in yeast. Fungal Genet Biol 52:53–64

    CAS  PubMed  Google Scholar 

  • Kiliç CC, Kukul YS, Anaç D (2008) Performance of purslane (Portulaca oleracea L.) as a salt-removing crop. Agric Water Manag 95(7):854–858. ISSN 0378–3774. http://dx.doi.org/10.1016/j.agwat.2008.01.019

  • Klumpp A, Bauer K, Franz-Gerstein C, de Menezes M (2002) Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cachoeira in Bahia (Brazil). Environ Int 28:165–171

    CAS  Google Scholar 

  • Koc H, Sari H (2009) Trace metal contents of some medicinal, aromatic plants and soil samples in the Mediterranean region, Turkey. J Appl Chem Res 8:52–57

    Google Scholar 

  • Kötschau A, Büchel G, Einax JW, Mirgorodsky D, Meißner R, von Tümpling W, Merten D (2014) Element contents in shoots of sunflower (Helianthus annuus): prediction versus measuring. Chemie der Erde - Geochemistry. Available online 22 March 2014, http://dx.doi.org/10.1016/j.chemer.2014.02.006

  • Kumar GP, Yadav SK, Thawale PR, Singh SK, Juwarkar AA (2008) Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter – a greenhouse study. Bioresour Technol 99:2078–2082

    CAS  PubMed  Google Scholar 

  • Kumar N, Bauddh K, Kumar S, Dwivedi N, Singh DP, Barman SC (2013) Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng 61:491–495. http://dx.doi.org/10.1016/j.ecoleng.2013.10.004

  • Kumari SP, Joanny K, Jesudas L, Kumar R (2012) Comparative study of metal uptake by medicinal plants growing in natural and polluted area of Eastern Ghats. Drug Invent Today 4(5):375–380

    Google Scholar 

  • Kurosawa K, Egashira K, Tani M, Jahiruddin M, Zofar A, Moslehuddin AZM, Rahman ZM (2008) Groundwater–soil–crop relationship with respect to arsenic contamination in farming villages of Bangladesh – a preliminary study. Environ Pollut 156:563–565

    CAS  PubMed  Google Scholar 

  • La Rocca N, Andreoli C, Giacometti GM, Rascio N, Moro I (2009) Responses of the Antarctic microalga Koliella antartica (Trebouxiophyceae, Chlorophyta) to cadmium contamination. Photosynthetica 47:471–479

    CAS  Google Scholar 

  • Lai HY, Chen ZS (2004) Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421–430

    CAS  PubMed  Google Scholar 

  • Lee S, Leustek T (1999) The affect of cadmium on sulfate assimilation enzymes in Brassica juncea. Plant Sci 141:201–207

    CAS  Google Scholar 

  • Lee JH, Hossner LR, Attrep M Jr, Kung KS (2002) Comparative uptake of plutonium from soils by Brassica juncea and Helianthus annuus. Environ Pollut 120:173–182

    CAS  PubMed  Google Scholar 

  • Lenka M, Panda KK, Panda BB (1992) Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. iv. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India. Arch Environ Contam Toxicol 22:195–202

    CAS  PubMed  Google Scholar 

  • Lesage E, Meers E, Vervaeke P, Lamsal S, Hopgood M, Tack FM, Verloo MG (2005) Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Int J Phytoremediation 7(2):143–152

    CAS  PubMed  Google Scholar 

  • Lewandowski I, Schmidt U, Londo M, Faaij A (2006) The economic value of the phytoremediation function – assessed by the example of cadmium remediation by willow (Salix ssp). Agric Syst 89:68–89. http://dx.doi.org/10.1016/j.agsy.2005.08.004

  • Li M, Yue-Jin Wu, Zeng-Liang Yu, Guo-Ping Sheng, Han-Qing Yu (2009) Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. Water Res 43:1247–1256. http://dx.doi.org/10.1016/j.watres.2008.12.013

  • Li YH, Hu HY, Liu JC, Wu GL (2010) Distribution and mobility of copper, zinc and lead in plant-sediment systems of Quanzhou Bay estuary, China. Int J Phytoremediation 12(3):291–305

    CAS  PubMed  Google Scholar 

  • Li H, Ye ZH, Wei ZJ, Wong MH (2011) Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants. Environ Pollut 159:30–37

    CAS  PubMed  Google Scholar 

  • Li Y, Zhang S, Jiang W, Liu D (2013) Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ Sci Pollut Res 20:1117–1123

    CAS  Google Scholar 

  • Li Z, Huiping Xiao, Shuiping Cheng, Liping Zhang, Xiaolong Xie, Zhenbin Wu (2014) A comparison on the phytoremediation ability of triazophos by different macrophytes. J Environ Sci 26:315–322. http://dx.doi.org/10.1016/S1001-0742(13)60417-9

  • Liang J, Yang Z, Tang L, Xu Y, Wang S, Chen F (2012) Growth performance and tolerance responses of jatropha (Jatropha curcas) seedling subjected to isolated or combined cadmium and lead stresses. Int J Agric Biol 14:861–869

    CAS  Google Scholar 

  • Lim JM, Salido AL, Butcher DJ (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76:3–9

    CAS  Google Scholar 

  • Lim CY, Chia-Lung Chen, Jing-Yuan Wang (2013) A strategy for urban outdoor production of high-concentration algal biomass for green biorefining. Bioresour Technol 135:175–181. ISSN 0960–8524, http://dx.doi.org/10.1016/j.biortech.2012.10.028

  • Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod 16:33–42. http://dx.doi.org/10.1016/S0926-6690(02)00005-5

  • Liphadzi MS, Kirkham MB (2006) Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. S Afr J Bot 72:391–397, http://dx.doi.org/10.1016/j.sajb.2005.10.010

    CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB, Mankin KR, Paulsen GM (2003) EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant and Soil 257:171–182

    CAS  Google Scholar 

  • Liu J, Dong Y, Xu H, Wang D, Xu J (2007a) Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. J Hazard Mater 147:947–953

    Google Scholar 

  • Liu Y-G, Fei Ye, Guang-ming Zeng, Ting Fan, Lei Meng, Hua-shan Yuan (2007b) Effects of added Cd on Cd uptake by oilseed rape and pai-tsai co-cropping. Trans Nonferrous Metals Soc China, 17:846–852. http://dx.doi.org/10.1016/S1003-6326(07)60186-1

  • Liu X, Shen Y, Lou L, Ding C, Cai Q (2009) Copper tolerance of the biomass crops Elephant grass (Pennisetum purpureum Schumach), Vetiver grass (Vetiveria zizanioides) and the upland reed (Phragmites australis) in soil culture. Biotechnol Adv 27:633–640

    CAS  PubMed  Google Scholar 

  • Liu J, Changqun Duan, Xuehong Zhang, Yinian Zhu, Xiaoyan Lu (2011) Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J Hazard Mater 188:85–91. http://dx.doi.org/10.1016/j.jhazmat.2011.01.066

  • Liu L Liangliang Hu, Jianjun Tang, Yuefang Li, Qian Zhang, Xin Chen (2012) Food safety assessment of planting patterns of four vegetable-type crops grown in soil contaminated by electronic waste activities. J Environ Manage 93:22–30. http://dx.doi.org/10.1016/j.jenvman.2011.08.021

  • Liua D, Jianga W, Liua C, Xina C, Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresour Technol 71:273–277

    Google Scholar 

  • Lokeshwari H, Chandrappa GT (2007) Effects of heavy metal contamination from anthropogenic sources on Dasarahalli tank, India. Lakes Reservoirs: Res Manage 12:121–128

    CAS  Google Scholar 

  • Lombi E, Gerzabek MH, Hborak O (1998) Mobility of heavy metals in soil and their uptake by sunflowers grown at different contamination levels. Agronomie 18:361–371

    Google Scholar 

  • Lotfy SM, Abdel Bary SAA, El-Naka EA, Abdel Sabour MF (2009) Influence of some chelators on the phytoextraction ability of sunflower, Helianthus annuus for cd and pb metals in polluted soil. Zagazig J Agric Res 36(3):541–558

    Google Scholar 

  • Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. ScienceAsia 30:93–103

    CAS  Google Scholar 

  • Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2011) Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 18:978–986

    CAS  Google Scholar 

  • Luhach J, Chaudhry S (2012) Phytoremediation potential of Jatropha curcas for removal of heavy metals from refinery sludge. Int J Sci Eng Res 3(10):1–5

    Google Scholar 

  • Lydakis-simantiris N, Skoula M, Fabian M, Naxakis G (2012) Cultivation of medicinal and aromatic plants in heavy metal contaminated soils -exploitation with caution. In: CRETE, 3rd international conference on industrial and hazardous waste management. pp 1–8

    Google Scholar 

  • Machender G, Dhakate R, Prasanna L, Govil PK (2011) Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabad, India. Environ Earth Sci 63:945–953

    CAS  Google Scholar 

  • Machender G, Dhakate R, Mallikharjuna Rao ST, Mangaraja Rao B, Prasanna L (2012) Heavy metal contamination in sediments of Balanagar industrial area, Hyderabad, Andra Pradesh, India. Arabian J Geosci 7:513–525. doi:10.1007/s12517-012-0759-3

    Google Scholar 

  • Madejón P, Murillo JM, Marañón T, Cabrera F, Soriano MA (2003) Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill. Sci Total Environ 307:239–257. http://dx.doi.org/10.1016/S0048-9697(02)00609-5

  • Madrid F, Liphadzi MS, Kirkham MB (2008) EDTA-assisted phytostabilization by barley roots contaminated with heavy metals. In: Hartemink AE, McBratney AB, Naidu R (eds) Developments in soil science, vol 32. Elsevier, pp 697–718. http://dx.doi.org/10.1016/S0166-2481(07)32029-1

  • Mahamadi C, Nharingo T (2010) Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresour Technol 101:859–864

    CAS  PubMed  Google Scholar 

  • Maine MA, Duarte MV, Suñ NL (2001) Cadmium uptake by floating macrophytes. Water Res 35(11):2629–2634

    CAS  PubMed  Google Scholar 

  • Maine MA, Suñe N, Hadad H, Sánchez G, Bonetto C (2006) Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecol Eng 2(6):341–347

    Google Scholar 

  • Maine MA, Suñe N, Hadad H, Sánchez G, Bonetto C (2007) Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Chemosphere 68:1105–1113

    CAS  PubMed  Google Scholar 

  • Maine MA, Suñe N, Hadad H, Sánchez G, Bonetto C (2009) Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland. J Environ Manage 90:355–363

    CAS  PubMed  Google Scholar 

  • Mainea MA, Suñe NL, Lagger SC (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38:1494–1501

    Google Scholar 

  • Majid NM, Islam MM, Riasmi Y (2012) Heavy metal uptake and translocation by Jatropha curcas L. in sawdust sludge contaminated soils. Aust J Crop Sci 6(5):891–898

    CAS  Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007) High uptake of 2,4,6-trinitrotoluene by vetiver grass – potential for phytoremediation? Environ Pollut 146:1–4

    CAS  PubMed  Google Scholar 

  • Malawska M, Wiłkomirski B (2001) An analysis of soil and plant (Taraxacum officinale) contamination with heavy metals and polycyclic aromatic hydro-carbons (PAHs) in the area of the railway junction Iława Główna, Poland. Water Air Soil Pollut 127:339–349

    CAS  Google Scholar 

  • Malenčić D, Kevrešan Ž, Popović M (2005) Heavy metals content in some medicinal and aromatic wild growing plants from the Frushka Gora Mountain. Annals of The Faculty of Engineering Hunedoara – 2005 Tome III. Fascicole 1. pp 37–40

    Google Scholar 

  • Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138

    CAS  PubMed  Google Scholar 

  • Manciulea A, Ramsey MH (2006) Effect of scale of Cd heterogeneity and timing of exposure on the Cd uptake and shoot biomass, of plants with a contrasting root morphology. Sci Total Environ 367:958–967

    CAS  PubMed  Google Scholar 

  • Mane PC, Bhosle AB, Kulkarni PA (2011) Biosorption and biochemical study on water hyacinth (Eichhornia crassipes) with reference to selenium. Arch Appl Sci Res 3(1):222–229

    CAS  Google Scholar 

  • Mangabeira PAO, Lamperti A, de Almeida AAF, Oliveira AH, Escaig F, Severo MIG, Silva D d C, Saloes M, Mielke MS, Lucena ER, Martins MC, Santana KB, Gavrilov KL, Galle P, Levi-Setti R (2004) Accumulation of chromium in root tissues of Eichhornia Crassipes (Mart.) Solms. in Cachoeira river – Brazil. Appl Surf Sci 231–232(2004):497–501

    Google Scholar 

  • Mangabeira PA, de Almeida AAF, Silva DC, Oliveira AH, Fernandes VF, Ferreira AS, dos Santos Júnior AJ, Galle P (2010) Bioaccumulation of chromium in Alternanthera philoxeroides using ion microscopy (SIMS). Microsc Microanal 16(Suppl 2):398–399

    CAS  Google Scholar 

  • Mangabeira PA, Ferreira AS, de Almeida AAF, Fernandes VF, Lucena E, Souza VL, dos Santos Júnior AJ, Oliveira AH, Grenier-Loustalot MF, Barbier F, Silva DC (2011) Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes. Biometals 24:1017–1026

    CAS  PubMed  Google Scholar 

  • Mangkoedihardjo S, Surahmaida (2008) Jatropha curcas L. for phytoremediation of lead and cadmium polluted soil. World Appl Sci J 4(4):519–522

    Google Scholar 

  • Mangkoedihardjo S, Ratnawati R, Alfianti N (2008) Phytoremediation of hexavalent chromium polluted soil using Pterocarpus indicus and Jatropha curcas L. World Appl Sci J 4(3):338–342

    Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    CAS  PubMed  Google Scholar 

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387

    CAS  PubMed  Google Scholar 

  • Marillia E-F, Francis T, Falk KC, Smith M, Taylor DC (2014) Palliser’s promise: Brassica carinata, an emerging western Canadian crop for delivery of new bio-industrial oil feedstocks. Biocatalysis Agric Biotechnol 3:65–74. ISSN 1878–8181, http://dx.doi.org/10.1016/j.bcab.2013.09.012

  • Martin RS, Mather TA, Pyle DM, Day JA, Witt MLI, Collins SJ, Hilton RG (2010) Major and trace element distributions around active volcanic vents determined by analyses of grasses: implications for element cycling and bio-monitoring. Bull Volcanol 72:1009–1020

    Google Scholar 

  • Mayora ON, Njeri KP, Rang’ondi OE, Sarima CJ (2012) The potential of Zea mays, Commelina bengelensis, Helianthus annuus and Amaranthus hybridus for phytoremediation of waste water. Ambiente & Água – Interdiscip J Appl Sci 7(3):51

    Google Scholar 

  • McCutcheon SC, Schnoor JL (eds) (2003) Phytoremediation – transformation and control of contaminants. Wiley Interscience, Hoboken, pp 985

    Google Scholar 

  • Meera M, Agamuthu P (2011) phytoextraction of As and Fe using Hibiscus cannabinus L. from soil polluted with landfill leachate. Int J Phytoremediation 14:186–199

    Google Scholar 

  • Meers E, Ruttens A, Hopgood M, Lesage E, Tack MFG (2005) Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61:561–572

    CAS  PubMed  Google Scholar 

  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, Thewys T, Tack FMG (2010) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41. http://dx.doi.org/10.1016/j.chemosphere.2009.08.015

  • Meka PK, Tripathi V, Singh RP (2007) Synthesis of biodiesel fuel from safflower oil using various reaction parameters. J Oleo Sci 56(1):9–12

    Google Scholar 

  • Melo VF, Gabardo J, Souza LCP, Reissmann CB, de Andrade MG (2009) Heavy metals in soils of a lead mining and metallurgy area: I – Phytoextraction. Rev Bras Ciênc Solo 33(6):1879–1888

    Google Scholar 

  • Meng DK, Chen J, Yang ZM (2011) Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. J Hazard Mater 186:1823–1829

    CAS  Google Scholar 

  • Meyers DER, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153:323–332

    CAS  PubMed  Google Scholar 

  • Mhatre GN, Chaphekar SB (1985) The effect of mercury on some aquatic plants. Environ Pollut A, Ecol Biol 39(3):207–216

    CAS  Google Scholar 

  • Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 19(363):151–158

    Google Scholar 

  • Minh VV, Khoa LV (2009) Phytoremediation of cadmium and lead contaminated soil types by vetiver grass. VNU J Sci, Earth Sci 25:98–103

    Google Scholar 

  • Miretzky P, Saralegui A, Fernández Cirelli A (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005

    CAS  PubMed  Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62:247–254

    CAS  PubMed  Google Scholar 

  • Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99:7091–7097

    CAS  PubMed  Google Scholar 

  • Mishra VK, Tripathi BD, Kima KH (2009) Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J Hazard Mater 172:749–754

    CAS  PubMed  Google Scholar 

  • Mishra VK, Upadhyay AR, Pandey SK, Tripathi BD (2008) Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environ Monit Assess 141:49–58

    CAS  PubMed  Google Scholar 

  • Mishra S, Mohanty M, Pradhan C, Patra HK, Das R, Sahoo S (2012) Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes—a case study at JK Paper mill, Rayagada. India Environ Monit Assess 185:4347–4359. doi:10.1007/s10661-012-2873-9

    PubMed  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    CAS  PubMed  Google Scholar 

  • Mokgalaka-Matlala NS, Flores-Taviźon E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2008) Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina). Int J Phytoremediation 10:47–60

    CAS  PubMed  Google Scholar 

  • Mokgalaka-Matlala NS, Flores-Tavizón E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2009) Arsenic tolerance in mesquite (Prosopis sp.): low molecular weight thiols synthesis and glutathione activity in response to arsenic. Plant Physiol Biochem 47:822–826

    CAS  PubMed  Google Scholar 

  • Mokhtar H, Morad N, Fizri FFA (2011) Hyperaccumulation of copper by two species of aquatic plants. In: 2011 international conference on environment science and engineering IPCBEE, vol 8. IACSIT Press, Singapore

    Google Scholar 

  • Moodley KG, Baijnath H, Southway-Ajulu FA, Maharaj S, Chetty SR (2007) Determination of Cr, Pb and Ni in water, sludge and plants from settling ponds of sewage treatment works. Water SA 33:723–728

    CAS  Google Scholar 

  • Mufarrege MM, Hadad HR, Maine MA (2010) Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Arch Environ Contam Toxicol 58:53–61

    CAS  PubMed  Google Scholar 

  • Mulligan CN, Youn RN, Gibbs B (2001) Heavy metal removal from Sediments by biosurfactants. J Hazard Mater 85:111–125

    CAS  PubMed  Google Scholar 

  • Nagaraju A, Prasad KSS (1998) Growth of Prosopis juliflora on Pegmatite tailings from Nellore Mica Belt, Andhra Pradesh, India. Environ Geol 36(3–4):320

    Google Scholar 

  • Najafi F, Khavari-Nejad RA, Hasanjanzadeh F (2011) The physiological responses of sunflower (Helianthus annuus L.) to NiSO4. Afr J Plant Sci 5(3):201–206

    CAS  Google Scholar 

  • Nakwanit S, Visoottiviseth P, Khokiattiwong S, Sangchoom W (2011) Management of arsenic-accumulated waste from constructed wetland treatment of mountain tap-water. J Hazard Mater 185:1081–1085

    CAS  PubMed  Google Scholar 

  • Naqvi SM, Rizvi SA (2000) Accumulation of chromium and copper in three different soils and bioaccumulation in an aquatic plant, Alternanthera philoxeroides. Bull Environ Contami Toxicol 65:55–61

    CAS  Google Scholar 

  • Nathan O, Njeri KP, Rang’ondi OE, Sarima CJ (2012) The potential of Zea mays, Commelina bengelensis, Helianthus annuus and Amaranthus hybridus for phytoremediation of waste water. Revista Ambiente & Água – Interdiscip J Appl Sci 7(3):51–60. http://dx.doi.org/10.4136/ambi-agua.684

  • Navari-Izzo F, Quartacci MF, Pinzino C, Dalla VF, Sgherri C (1998) Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess of copper. Physiol Plant 104:630–638

    CAS  Google Scholar 

  • Navari-Izzo F, Pinzino C, Quartacci MF, Sgherri C (1999) Superoxide and hydroxyl radical generation, and superoxide dismutase in PSII membrane fragments from wheat. Free Radic Res 31:S3–S9

    CAS  PubMed  Google Scholar 

  • Naveed NH, Batool AI, Rehman FU, Hameed U (2010) Leaves of roadside plants as bioindicator of traffic related lead pollution during different seasons in Sargodha, Pakistan. Afr J Environ Sci Technol 4(11):770–774

    CAS  Google Scholar 

  • Naveed NH, Batool AI, Hameed U, Ali A, Rehman MFU, Sher M, Ali S, Faiz S (2012) Biomonitoring of the traffic related heavy metal pollution using roadside plants as possible bioindicators during different seasons. Asian J Chem 24(10):4661–4664

    CAS  Google Scholar 

  • Nazir A, Malik RN, Ajaib M, Khan N, Siddiqui MF (2011) hyperaccumulators of heavy metals of industrial areas of Islamabad and Rawalpindi. Pak J Bot 43(4):1925–1933

    CAS  Google Scholar 

  • Ndzomo GT, Ndoumou DO, Awah MT (1994) Effect of Fe2+, Mn2+, Zn2+ and Pb2+ on H+/K+ fluxes in excised Pistia stratiotes roots. Biol Plant 36(4):591–597

    CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2005) Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int J Phytoremediation 7(4):337–349

    CAS  PubMed  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2007) Chemical mutagenesis–a promising technique to increase metal concentration and extraction in sunflowers. Int J Phytoremediation 9(2):149–165

    CAS  PubMed  Google Scholar 

  • Niu Z, Sun L, Sun T (2009) Response of root and aerial biomass to phytoextraction of Cd and Pb by sunflower, castor bean, alfalfa and mustard. Adv Environ Biol 3(3):255–262

    CAS  Google Scholar 

  • Nouairi I, Ammar WB, Youssef NB, Daoud DBM, Ghorbal MH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519

    CAS  Google Scholar 

  • NRC (1985) Meat and poultry inspection. The scientific basis of the nation’s program. National Academy Press, Washington, DC

    Google Scholar 

  • Núñez SER, Negrete JLM, Rios JEA, Hadad HR, Maine MA (2011) Hg, Cu, Pb, Cd, and Zn accumulation in macrophytes growing in tropical wetlands. Water Air Soil Pollut 216:361–373

    Google Scholar 

  • Núñez-López RA, Meas Y, Gama SC, Borges RO, Olguín EJ (2008) Leaching of lead by ammonium salts and EDTA from Salvinia minima biomass produced during aquatic phytoremediation. J Hazard Mater 154(I):623–632. http://dx.doi.org/10.1016/j.jhazmat.2007.10.101

  • O’Keeffe DH, Hardy JK, Rao RA (1984) Cadmium uptake by the water hyacinth: effects of solution factors. Environ Pollut Ser A, Ecol Biol 34(2):133–147

    Google Scholar 

  • Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology 13:637–646

    CAS  PubMed  Google Scholar 

  • Odjegba VJ, Fasidi IO (2006) Effects of heavy metals on some proximate composition of Eichhornia crassipes. J Appl Sci Environ Manage 10(1):83–87

    Google Scholar 

  • Odjegba VJ, Fasidi IO (2007) Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist 27:349–355

    Google Scholar 

  • Olivares AR, Carrillo-González R, González-Chávez MDCA, Soto Hernández RM (2013) Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manage 114:316–323

    Google Scholar 

  • Oseni AO (2004) Phytoremediation of selected heavy metals from aqueous media by water hyacinth (Eichhornia crassipes (Mart.) Solms. M.Tech degree thesis submitted to The Federal university of Technology Akuro, Ondo State, Nigeria

    Google Scholar 

  • Oshunsanya SO, Oluwasemire KO, Ogunwumi KS (2012) The use of vetiver grass slips in removing heavy metal contamination of dumpsite in Ibadan Metropolis. Scholarly J Agric Sci 2(6):115–118

    Google Scholar 

  • Ozcan MM, Akbulut M (2007) Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chem 106:852–858

    Google Scholar 

  • Page K, Harbottle MJ, Cleall PJ, Hutchings TR (2014) Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate. Sci Total Environ 487:260–271. http://dx.doi.org/10.1016/j.scitotenv.2014.04.021

  • Pagliano C et al (2006) Evidence for PSII-donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol B: Biol 84:70–78

    Google Scholar 

  • Paivaa LB, de Oliveira JG, Azevedo RA, Ribeiro DR, da Silva MG, Vitória AP (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exp Bot 65:403–409

    Google Scholar 

  • Pan W, Chuan Wu, Shengguo Xue, William Hartley (2014) Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation. J Environ Sci 26:892–899. http://dx.doi.org/10.1016/S1001-0742(13)60483-0

  • Pandey VC (2012a) Invasive species based efficient green technology for phytoremediation of fly ash deposits. J Geochem Explor 123:13–18. http://dx.doi.org/10.1016/j.gexplo.2012.05.008

  • Pandey VC (2012b) Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicol Environ Saf 82:8–12. http://dx.doi.org/10.1016/j.ecoenv.2012.05.002

  • Pandey VC (2013) Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecol Eng 57:336–341. http://dx.doi.org/10.1016/j.ecoleng.2013.04.054

  • Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47

    CAS  PubMed  Google Scholar 

  • Pang J, Chan GSY, Zhang J, Liang J, Wong MH (2003) Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes. Chemosphere 52:1559–1570

    CAS  PubMed  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    CAS  PubMed  Google Scholar 

  • Parth V, Murthy NN, Saxena PR (2009) Hydro-geochemistry around waste disposal site at Pattulaguda, Hyderabad, India. Goldschmidt Conf Abstr 2009:A998

    Google Scholar 

  • Parth V, Murthy NN, Saxena PR (2011) Assessment of heavy metal contamination in soil around hazardous waste disposal sites in Hyderabad city (India): natural and anthropogenic implications. J Environ Res Manage 2:027–034

    Google Scholar 

  • Patel A, Patra DD (2014) Influence of heavy metal rich tannery sludge on soil enzymes vis-à-vis growth of Tagetes minuta, an essential oil bearing crop. Chemosphere 112:23–332. http://dx.doi.org/10.1016/j.chemosphere.2014.04.063

  • Patrick Audet P (2014) Arbuscular mycorrhizal fungi and metal phytoremediation: ecophysiological complementarity in relation to environmental stress. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, San Diego, pp 133–160. ISBN 9780128008751, http://dx.doi.org/10.1016/B978-0-12-800875-1.00006-5

  • Paun A, Neagoe A, Baciu I (2012) The effects of arbuscular mychorrizal fungi on the transfer of heavy metals and oxidative stress related parameters in sunflower exposed to multi-element pollution. Rev Chim (Bucharest) 63(2):146–152

    Google Scholar 

  • Pavel P-B, Puschenreiter M, Wenzel WW, Diacu E, Barbu CH (2014) Aided phytostabilization using Miscanthus sinensis giganteus on heavy metal-contaminated soils. Sci Total Environ 479–480:125–131. http://dx.doi.org/10.1016/j.scitotenv.2014.01.097

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2013) Remediation of a mercury-contaminated industrial soil using bioavailable contaminant stripping. Pedosphere 23(1):104–110

    Google Scholar 

  • Pellegrineschi A, Damon JP, Valtorta N, Paillard N, Tepfer D (1994) Improvement of ornamental characters and fragrance production through genetic transformation by Agrobacterium rhizigenes. Biotechnology 12:64–68

    CAS  Google Scholar 

  • Peña A, Mingorance MD, Guzmán I, Sánchez L, Fernández-Espinosa AJ, Valdés B, Rossini-Oliva S (2014) Protecting effect of recycled urban wastes (sewage sludge and wastewater) on ryegrass against the toxicity of pesticides at high concentrations. J Environ Manag 142:23–29. http://dx.doi.org/10.1016/j.jenvman.2014.04.002

  • Pérez-López R, Márquez-García B, Abreu MM, Nieto JM, Córdoba F (2014) Erica andevalensis and Erica australis growing in the same extreme environments: phytostabilization potential of mining areas. Geoderma 230–231:194–203. http://dx.doi.org/10.1016/j.geoderma.2014.04.004

  • Pinder JE III, Hintona TG, Whicker FW (2005) The influence of a whole-lake addition of stable cesium on the remobilization of aged 137Cs in a contaminated reservoir. J Environ Radioact 80:225–243

    CAS  PubMed  Google Scholar 

  • Pinder JE III, Hintona TG, Whicker FW (2006) Foliar uptake of cesium from the water column by aquatic macrophytes. J Environ Radioact 85:23–47

    CAS  PubMed  Google Scholar 

  • Płażek A, Dubert F, Kościelniak J, Tatrzańska M, Maciejewski M, Gondek K, Żurek G (2014) Tolerance of Miscanthus giganteus to salinity depends on initial weight of rhizomes as well as high accumulation of potassium and proline in leaves. Ind Crops Products 52:278–285. http://dx.doi.org/10.1016/j.indcrop.2013.10.041

  • Poonam, Bhardwaj R, Sharma R, Handa N, Kaur H, Kaur R, Sirhindi G, Thukral AK (2014) Prospects of field crops for phytoremediation of contaminants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, San Diego, pp 449–470. http://dx.doi.org/10.1016/B978-0-12-800875-1.00019-3

  • Prabavathi R, Mathivanan V, Selvisabanayagam (2011) Analysis of concentration and accumulation of heavy metal cadmium in four selected terrestrial plants. Int J Dev Res 1(4):027–030

    Google Scholar 

  • Prasad KVSK, Saradhi PP, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42(1):1–10

    CAS  Google Scholar 

  • Prasad MNV (2004a) Phytoremediation of metals and radionuclides in the environment: the case for natural hyperaccumulators, metal transporters, soil amending chelators and transgenic plants. In: Prasad MNV (ed) Trace metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer/Narosa, Heidelberg/New Delhi, pp 345–392

    Google Scholar 

  • Prasad MNV (2004b) Phytoremediation of metals in the environment for sustainable development. Proc Indian Natl Sci Acad 70:71–98

    CAS  Google Scholar 

  • Prasad MNV (2007a) Phytoremediation in India. In: Willey N (ed) Phytoremediation methods and reviews. Humana Press, Totowa

    Google Scholar 

  • Prasad MNV (2007b) Sunflower (Helinathus annuus L.): a potential crop for environmental industry. Helia 30(46):167–174

    Google Scholar 

  • Prasad MNV (2007c) Aquatic plants for phytotechnology. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, New York, pp 259–274

    Google Scholar 

  • Prasad MNV (2008) Trace elements in traditional healing plants – remedies or risks. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, New York, pp 137–160

    Google Scholar 

  • Prasad MNV (2011) A state-of-the-art report on bioremediation, its applications to contaminated sites in India. M/o of Environment & Forests, GOI, New Delhi. 90

    Google Scholar 

  • Prasad MNV (2012) Exploitation of weeds and ornamentals for bioremediation of metalliferous substrates in the era of climate change. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. doi:10.1007/978-1-4614-0815-4_23

  • Prasad MNV (2013) Metallophytes – properties, functions and applications. The Botanica 62, 63:62–63, 17–26

    Google Scholar 

  • Prasad MNV (2014) Engineered phyto-covers as natural caps for containment of hazardous mine and municipal solid waste dump sites – possible energy sources. In: Öztürk M et al (eds) Phytoremediation for green energy. doi:10.1007/978-94-007-7887-0_3

  • Prasad MNV (ed) (2015) Bioremediation and bioeconomy. Elsevier, USA (in press)

    Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants – Biodiversity prospecting for phyto- remediation technology. Electron J Biotechnol 6:75–321, Online electronic journal http://www.ejbiotechnology.info/content/vol6/

  • Prasad MNV, Rajendra Prasad (2012) Nature’s cure for cleanup of contaminated environment – a review of bioremediation strategies. Rev Environ Health 28:181–189. doi:10.1515/reveh-2012-0028

  • Prasad MNV, Nakbanpote W (2015) Integrated management of mine waste using biogeo-technologies focusing Thai mines. In: Thangavel P, Sridevi G (eds) Environmental sustainability. Role of green technologies. doi:10.1007/978-81-322-2056-5_14

  • Prasad MNV, Greger M, Smith BN (2001) Aquatic macrophytes. In: Prasad MNV (ed) Metals in the environment – analysis by biodiversity. Marcel Dekker Inc, New York, pp 259–288

    Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158(1):18–23

    CAS  PubMed  Google Scholar 

  • Premarathna HMPL, Hettiarachchi GM, Indraratne SP (2011) Trace metal concentration in crops and soils collected from intensively cultivated areas of Sri Lanka. Pedologist 2011:230–240

    Google Scholar 

  • Princewill-Ogbonna IL, Ogbonna PC (2011) Heavy metal content in soil and medicinal plants in high traffic urban area. Pak J Nutr 10(7):618–624

    CAS  Google Scholar 

  • Puhui Ji P, Tieheng Sun, Yufang Song, M. Leigh Ackland, Yang Liu (2011) Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut 159(3):762–768. ISSN 0269–7491, http://dx.doi.org/10.1016/j.envpol.2010.11.029

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181, ISSN 0168–9452, http://dx.doi.org/10.1016/j.plantsci.2004.06.018

    CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency and excess. J Exp Bot 152:67–75

    Google Scholar 

  • Quartacci MF, Baker AJM, Navari-Izzo F (2005) Nitrilotriacetate- and citric acid-assisted Phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere 59:1249–1255

    CAS  PubMed  Google Scholar 

  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925

    CAS  PubMed  Google Scholar 

  • Qureshi MI, D’Amici GM, Fagioni M, Rinalducci S, Zolla L (2010) Iron stabilizes thylakoid protein–pigment complexes in Indian mustard during Cd-phytoremediation as revealed by BN-SDS-PAGE and ESI-MS/MS. J Plant Physiol 167:761–770

    CAS  PubMed  Google Scholar 

  • Rahi TS, Singh K, Singh B (2013) Screening of sodicity tolerance in Aloe vera: an industrial crop for utilization of sodic lands. Ind Crops Products 44:528–533. ISSN 0926–6690, http://dx.doi.org/10.1016/j.indcrop.2012.10.001

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    CAS  PubMed  Google Scholar 

  • Rai PK, Kumar G (2010) The genotoxic potential of two heavy metals in inbred lines of maize (Zea mays L.). Turk J Bot 34:39–46

    Google Scholar 

  • Rai UN, Sinha S, Tripathi RD, Chandra P (1995) Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng 5:5–12

    Google Scholar 

  • Rai UN, Pandey K, Sinha S, Singh A, Saxena R, Gupta DK (2004) Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and Rhizobium inoculation. Environ Int 30:293–300

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Freitas H (2008a) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Freitas H (2008b) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71(5):834–842, ISSN 0045–6535

    Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741–748

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2008) Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48:500–508

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Prasad MNV, Freitas H, Ae N (2009) Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol 29(2):120–130

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore producing bacteria for improving heavy-metal phytoextraction. Trends Biotechnol 28(3):142–149

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    CAS  PubMed  Google Scholar 

  • Rakhshaee R, Giahi M, Pourahmad A (2009) Studying effect of cell wall’s carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution. J Hazard Mater 163(1):165–173

    CAS  PubMed  Google Scholar 

  • Ramadhs AS, Jayaraj S, Muraleedharan C (2004) Use of vegetable oils as I.C engine fuels: a review. Renew Energy 29:727–742

    Google Scholar 

  • Ramlal PS, Bugeny FWB, Kling GW, Nriagu JO, Rudd JWM, Campbell LM (2003) Mercury concentrations in water, sediment, and biota from lake Victoria, East Africa. J Great Lakes Res 29(2):283–291

    CAS  Google Scholar 

  • Rana S, Jana J, Bag SK, Mukherjee (Roy) S, Biswas JK, Ganguly (Lahiri) S, Sarkar (Paria) D, Jana BB (2011) Performance of constructed wetlands in the reduction of cadmium in a sewage treatment cum fish farm at Kalyani, West Bengal, India. Ecol Eng 37:2096–2100

    Google Scholar 

  • Rascio N, Vecchia FD, La Rocca N, Barbato R, Pagliano C, Raviolo M, Gonnelli C, Gabbrielli R (2008) Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environ Exp Bot 62:267–278

    CAS  Google Scholar 

  • Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 1:708–717

    CAS  PubMed  Google Scholar 

  • Rocio M, Elvira E, Pilar Z, María-José S (2013) Could an abandoned mercury mine area be cropped? Environ Res 125:150–159. ISSN 0013–9351, http://dx.doi.org/10.1016/j.envres.2012.12.012

  • Romeiro S, Lagôa AMMA, Furlani PR, de Abreu CA, de Abreu MF, Erismann NM (2006) Lead uptake and tolerance of Ricinus communis L. Braz J Plant Physiol 18(4):483–489

    CAS  Google Scholar 

  • Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of tree growing on a metal contaminated soil. Plant Soil 256:265–272

    CAS  Google Scholar 

  • Roodi MM, Said MABM, Honari H (2012) Phytoremediation using the influence of aromatic crop on heavy-metal polluted soil, a review. Adv Environ Biol 6(10):2663–2668

    CAS  Google Scholar 

  • Roongtanakiat N, Chairoj P (2001) Uptake potential of some heavy metals by vetiver grass. Kasetsart J (Nat Sci) 35:46–50

    CAS  Google Scholar 

  • Roongtanakiat N, Sanoh S (2011) Phytoextraction of zinc, cadmium and lead from contaminated soil by vetiver grass. Kasetsart J (Nat Sci) 45:603–612

    CAS  Google Scholar 

  • Roongtanakiat N, Tangruangkiat S, Meesat R (2007) Utilization of Vetiver grass (Vetiveria zizanioides) for removal of heavy metals from industrial wastewaters. Sci Asia 33:397–403

    CAS  Google Scholar 

  • Roongtanakiat N, Osotsapar Y, Yindiram C (2008) Effects of soil amendment on growth and heavy metals content in Vetiver grown on iron ore tailings. Kasetsart J (Nat Sci) 42:397–406

    CAS  Google Scholar 

  • Roongtanakiat N, Osotsapar Y, Yindiram C (2009) Influence of heavy metals and soil amendments on Vetiver (Chrysopogon zizanioides) grown in Zinc mine soil. Kasetsart J (Nat Sci) 43:37–49

    CAS  Google Scholar 

  • Roongtanakiat N, Nirunrach T, Chanyotha S, Hengchaovanich D (2003) Uptake of heavy metals in landfill leachate by vetiver grass. Kasetsart J (Nat Sci) 37:168–175

    Google Scholar 

  • Rotkittikhun P, Chaiyarat R, Kruatrachue M, Pokethitiyook P, Baker AJM (2007) Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Chemosphere 66:45–53

    CAS  PubMed  Google Scholar 

  • Ruiz JM, Rivero RM, Romero L (2007) Comparative effect of Al, Se, and Mo toxicity on NO3− assimilation in sunflower (Helianthus annuus L.) plants. J Environ Manage 83:207–212. http://dx.doi.org/10.1016/j.jenvman.2006.03.001

  • Rulangaranga ZK, Mugasha AL (2003) Effects of Chromium uptake on the growth characteristics of Eichhornia crassipes (Mart.) Solms. Tanz J Sci 29:109–125

    Google Scholar 

  • Sabudak T, Seren G, Kaykioglu G, Dincer AR (2007) determination of trace elements in soil and Sunflower (Helianthus annuus L.) plant parts. Fresenius Environ Bull 16(10):1274–1278

    CAS  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    PubMed  Google Scholar 

  • Saini P, Khan S, Baunthiyal M, Sharma V (2012) Organ-wise accumulation of fluoride in Prosopis juliflora and its potential for phytoremediation of fluoride contaminated soil. Chemosphere 89:633–635

    CAS  PubMed  Google Scholar 

  • Saleh HM (2012) Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nucl Eng Des 242:425–432

    CAS  Google Scholar 

  • Samardjieva KA, Pissarra J, Castro PM, Tavares F (2011) Insights into phytoremediation solutions for environmental recovery. Recent Pat Biotechnol 5(1):25–39

    CAS  PubMed  Google Scholar 

  • Santos-Jallath J, Castro-Rodríguez A, Huezo-Casillas J, Torres-Bustillos L (2012) Arsenic and heavy metals in native plants at tailings impoundments in Queretaro, Mexico. Phys Chem Earth 37–39:10–17

    Google Scholar 

  • Sarin R, Sharma M (2007) Jatropha Palm biodiesel blends: an optimum mix for Asia. Fuel 86:1365–1371

    CAS  Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Małkowski E, Pogrzeba M, Kuperberg JM, Kryński K (2004) Phytoextraction crop disposal—an unsolved problem. Environ Pollut 128:373–379. http://dx.doi.org/10.1016/j.envpol.2003.09.012

  • Sas-Nowosielska A, Kucharski R, Pogrzeba M, Malkowski E (2008) Soil remediation scenarios for heavy metal contaminated soil. In: Simeonov L, Sargsyan V (eds) Soil chemical pollution, risk assessment, remediation and security. Springer Science + Business Media B.V, pp 301–307

    Google Scholar 

  • Satyakala G, Jamil K (1992) Chromium-induced biochemical changes in Eichhornia crassipes (Mart) Solms and Pistia stratiotes L. Bull Environ Contam Toxicol 48:921–928

    CAS  PubMed  Google Scholar 

  • Saxena PK, Raj SK, Dan T, Perras MR, Vettakkorumaka-nakav NN (1999) Phytoremediation of heavy metal contaminated and polluted soils. In: Prasad MNV, Hagemayer J (eds) Heavy metal stress in plants – from molecules to ecosystems. Springer, Berlin, pp 305–329

    Google Scholar 

  • Saxena M, Bisht R, Roy SD, Sopory SK, Bhalla-Sarin N (2005) Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn, and ABA. Biochem Biophys Res Commun 336:813–819

    CAS  PubMed  Google Scholar 

  • Schafer HJ, Greiner S, Rausch T, Haag-Kerwer A (1997) In seedlings of the heavy metal accumulator Brassica juncea Cu2+ differentially affects transcript amounts for y-glutamylcysteine synthetase (y-ECS) and metallothionein (MT2). FEBS Lett 404:216–220

    CAS  PubMed  Google Scholar 

  • Schiavon M, Pittarello M, Pilon-Smits EAH, Wirtz M, Hell R, Malagoli M (2012) Selenate and molybdate alter sulfate transport and assimilation in Brassica juncea L. Czern.: implications for phytoremediation. Environ Exp Bot 75:41–51, http://dx.doi.org/10.1016/j.envexpbot.2011.08.016

    CAS  Google Scholar 

  • Schmidke I, Stephan UW (1995) Transport of metal micronutrients in the phloem of castor bean (Ricinus communis) seedlings. Physiol Plant 95(1):147–153

    CAS  Google Scholar 

  • Schmidt U (2003) Enhancing phytoextraction: the effect of chemical plant accumulation and soil manipulation on mobility, plant accumulation and leaching of heavy metals. J Environ Qual 32:1939–1954

    CAS  PubMed  Google Scholar 

  • Schneider T, Haag-Kerwer A, Maetz M, Niecke M, Povh B, Rausch T, Schuûler A (1999) Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L. Nucl Instrum Methods Phys Res B 158:329–334

    CAS  Google Scholar 

  • Schorin H, de Benzo ZA, Bastidas C, Velosa M, Marcano E (1991) The use of water hyacinths to determine trace metal concentrations in the tropical Morichal Largo River, Venezuela. Appl Geochem 6(2):195–200

    CAS  Google Scholar 

  • Scora RW, Chang AC (1997) Essential oil quality and heavy metal concentrations of peppermint grown on municipal sludge amended soil. J Environ Qual 26:975–979

    CAS  Google Scholar 

  • Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253

    CAS  PubMed  Google Scholar 

  • Sebastiani L, Scebba F, Tognetti R (2004) Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides × maximowiczii) and I-214 (P. × euramericana) exposed to industrial waste. Environ Exp Bot 52:79–88. ISSN 0098–8472, http://dx.doi.org/10.1016/j.envexpbot.2004.01.003

  • Sekhar KC, Chary NS, Kamala CT, Venkateswara Rao J, Balaram V, Anjaneyulu Y (2003) Risk assessment and pathway study of arsenic in industrially contaminated sites of Hyderabad: a case study. Environ Int 29:601–611

    Google Scholar 

  • Sekhar KC, Kamala CT, Chary NS, Balaram V, Garcia G (2005) Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58:507–514

    Google Scholar 

  • Sekhar KC, Chary NS, Kamala CT, Vairamani M, Anjaneyulu Y, Balaram V, Sorlie JE (2006) environmental risk assessment studies of heavy metal contamination in the industrial area of Kattedan, India—a case study. Human Ecol Risk Assess 12:408–422

    Google Scholar 

  • Sekhar KC, Kamala CT, Chary NS, Balaram V, Garcia G (2005) Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58:507–514, http://dx.doi.org/10.1016/j.chemosphere.2004.09.022

  • Seleiman MF, Santanen A, Stoddard FL, Mäkelä P (2012) Feedstock quality and growth of bioenergy crops fertilized with sewage sludge. Chemosphere 89:1211–1217. ISSN 0045–6535, http://dx.doi.org/10.1016/j.chemosphere.2012.07.031

  • Senthilkumar P, Prince WS, Sivakumar S, Subbhuraam CV (2005) Prosopis juliflora–a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils. Chemosphere 60(10):1493–1496

    CAS  PubMed  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85

    CAS  PubMed  Google Scholar 

  • Seth CS, Misra V, Singh RR, Zolla L (2012) EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture. Plant Soil 347:231–242

    Google Scholar 

  • Sgherri C, Cosi E, Navari-Izzo F (2003) Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol Plant 118:21–28

    CAS  PubMed  Google Scholar 

  • Shabani N, Mahajan DM, Gunale VR, Sayadi MH (2010) comparative assessment of Alternanthera philoxeroides and Hygrophila shoolis in lead phytoextraction from soil. Pollut Res 29(3):483–488

    CAS  Google Scholar 

  • Sharmin SA, Iftekhar Alam, Kyung-Hee Kim, Yong-Goo Kim, Pil Joo Kim, Jeong Dong Bahk, Byung-Hyun Lee (2012) Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Plant Sci 187:113–126. http://dx.doi.org/10.1016/j.plantsci.2012.02.002

  • Shelef O, Gross A, Rachmilevitch S (2012) The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res 46:3967–3976. http://dx.doi.org/10.1016/j.watres.2012.05.020

  • Shelmerdine PA, Black CR, McGrath SP, Young SD (2009) Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environ Pollut 157:1589–1596, http://dx.doi.org/10.1016/j.envpol.2008.12.029

    CAS  PubMed  Google Scholar 

  • Sheng X, Leni Sun, Zhi Huang, Linyan He, Wenhui Zhang, Zhaojin Chen (2012) Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. J Environ Manage 103:58–64. http://dx.doi.org/10.1016/j.jenvman.2012.02.030

  • Shekhar C (2012) Nature cure: bioremediation as a sustainable solution for polluted sites. Chem Biol 19:307–308

    CAS  PubMed  Google Scholar 

  • Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561

    CAS  PubMed  Google Scholar 

  • Shiyab S, Chen J, Han FX, Monts DL, Matta FB, Gu M, Sua Y (2009) Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 72:619–625

    CAS  PubMed  Google Scholar 

  • Shtangeeva I, Laiho JV-P, Kahelin H, Gobran GR (2004) Phytoremediation of metal-contaminated soils. Symposia papers presented before the Division of Environmental Chemistry. American Chemical Society, Anaheim, CA, USA. http://ersdprojects.science.doe.gov/workshoppdfs/california 2004/p050.pdf

  • Shukla OP, Juwarkar AA, Singh SK, Khan S, Rai UN (2011) Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Manage 31:115–123

    CAS  Google Scholar 

  • Siegel BZ, Lasconia M, Yaeger E, Siegel SM (1984) The phytotoxicity of mercury vapor. Water Air Soil Pollut 23:15–24

    CAS  Google Scholar 

  • Sinegani AAS, Khalilikhah F (2008) Phytoextraction of lead by Helianthus annuus: effect of mobilising agent application time. Plant Soil Environ 54(10):434–440

    Google Scholar 

  • Singh G (1995) An agroforestry practice for the development of salt lands using Prosopis juliflora and Leptochloa fusca. Agrofor Syst 29:61–75

    Google Scholar 

  • Singh AK, Fernando S (2006) Catalyzed fast-transesterification of Soybean oil using ultrasonication. American Society of Agricultural Engineers, ASAE Annual Meeting, Paper # 066220

    Google Scholar 

  • Singh J, Kalamdhad AS (2013) Assessment of bioavailability and leachability of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecol Eng 52:59–69

    Google Scholar 

  • Singh D, Tiwari A, Gupta R (2012) Phytoremediation of lead from wastewater using aquatic plants. J Agric Technol 8(1):1–11

    Google Scholar 

  • Singh S, Melo JS, Eapen S, D’Souza SF (2008) Potential of vetiver (Vetiveria zizanioides L. Nash) for phytoremediation of phenol. Ecotoxicol Environ Saf 71:671–676

    CAS  PubMed  Google Scholar 

  • Singh S, Saxena R, Pandey K, Bhatt K, Sinha S (2004) Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential. Chemosphere 57:1663–1673

    CAS  PubMed  Google Scholar 

  • Singh R, Singh DP, Kumar N, Bhargava SK, Barman SC (2010) Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. J Environ Biol 31:421–430

    CAS  PubMed  Google Scholar 

  • Singh K, Singh B, Tuli R (2013) Sodic soil reclamation potential of Jatropha curcas: a long-term study. Ecol Eng 58:434–440. http://dx.doi.org/10.1016/j.ecoleng.2013.07.006

  • Singh K, Singh B, Verma SK, Patra DD (2014) Jatropha curcas: a ten year story from hope to despair. Renewable Sustain Energy Rev 35:356–360, http://dx.doi.org/10.1016/j.rser.2014.04.033

  • Sinha S, Gupta AK (2005) Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Chemosphere 61:1204–1214. http://dx.doi.org/10.1016/j.chemosphere.2005.02.063

  • Sinha S, Saxena R, Singh S (2002) Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: its toxic effects. Environ Monit Assess 80(1):17–31

    CAS  PubMed  Google Scholar 

  • Sinha S, Basant A, Malik A, Singh KP (2009) Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L. Ecotoxicology 18:555–566

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sinha VK, Yadav V, Pandey A (2011) Phytoextraction of lead through Helianthus annuus and its effects on the growth of Cajanus cajan. Curr Bot 2(2):01–07

    Google Scholar 

  • Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145:234–237

    CAS  PubMed  Google Scholar 

  • Smith SL, Thelen KD, MacDonald SJ (2013) Yield and quality analyses of bioenergy crops grown on a regulatory brownfield. Biomass Bioenergy 49:123–130. ISSN 0961–9534, http://dx.doi.org/10.1016/j.biombioe.2012.12.017

  • Smolyakov BS (2012) Uptake of Zn, Cu, Pb, and Cd by water hyacinth in the initial stage of water system remediation. Appl Geochem 27:1214–1219

    CAS  Google Scholar 

  • Smykalova I, Vrbova M, Tejklova E, Vetrovcova M, Griga M (2010) Large scale screening of heavy metal tolerance in flax/linseed (Linum usitatissimum L.) tested in vitro. Ind Crops Products 32:527–533. http://dx.doi.org/10.1016/j.indcrop.2010.06.027

  • Solhi M, Hajabbasi MA, Shareatmadari H (2005) Heavy metals extraction potential of sunflower (Helianthus annuus) and Canola (Brassica napus). Caspian J Environ Sci 3(1):35–42

    Google Scholar 

  • Solís-Domínguez FA, Valentín-Vargas A, Chorover J, Maier RM (2011) Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ 409:1009–1016

    PubMed Central  PubMed  Google Scholar 

  • Soltan ME, Rashed MN (2003) Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Adv Environ Res 7:321–334

    CAS  Google Scholar 

  • Soudek P, Tykva R, Vanek T (2004) Laboratory analyses of 137Cs uptake by sunflower, reed and poplar. Chemosphere 55:1081–1087

    CAS  PubMed  Google Scholar 

  • Soudek P, Petrová Š, Benešová D, Vaněk T (2010) Phytoextraction of toxic metals by sunflower and corn plants. J Food Agric Environ 8(3&4):383–390

    CAS  Google Scholar 

  • Souza VL, da Costa SD, Santana KB, Mielke MS, de Almeida AAF, Mangabeira PAO, Rocha EA (2009) Efeitos do cádmio na anatomia e na fotossíntese de duas macrófitas aquáticas. Acta Bot Bras 23(2):343–354

    Google Scholar 

  • Sridhar MKC (1986) Trace element composition of Pistia stratiotes L. in a polluted lake in Nigeria. Hydrobiologia 131:273–276

    CAS  Google Scholar 

  • Sridhar BBM, Diehl SV, Han FX, Monts DL, Su Y (2005) Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ Exp Bot 54:131–141

    Google Scholar 

  • Srivastava NK, Srivastava AK (2010) Influence of some heavy metals on growth, alkaloid content and composition in Catharanthus roseus L. Indian J Pharm Sci 72:775–778

    PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, Sharma N, Singh N (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047. doi:10.1016/j.jhazmat.2012.08.019

  • Stanbrough R, Chuaboonmee S, Palombo EA, Malherbe F, Bhave M (2013) Heavy metal phytoremediation potential of a heavy metal resistant soil bacterial isolate, Achromobacter sp. Strain AO22. APCBEE Procedia 5:502–507. http://dx.doi.org/10.1016/j.apcbee.2013.05.085

  • Stancheva I, Geneva M, Hristozkova M, Boychinova M, Markovska Y (2009) Essential oil variation of Salvia officinalis (l.), grown on heavy metals polluted soil. Biotechnol Biotechnol. EQ. 23/2009/SE, Special Edition/on-Line. XI anniversary scientific conference, 120 Years of Academic Education In Biology, 45 Years Faculty of Biology, pp 373–376

    Google Scholar 

  • Stancheva I, Geneva M, Yonova P, Markovska Y (2011) Accumulation of Cd, Pb and Zn in Tribulus terrestris L grown on industrially polluted soil and plant antioxidant response. Adv Environ Biol 5(2):300–306

    CAS  Google Scholar 

  • Stephan UW, Schmidke I, Pich A (1994) Phloem translocation of Fe, Cu, Mn, and Zn in Ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal ions, in different seedling parts. Plant Soil 165:181–188

    CAS  Google Scholar 

  • Stephan UW, Schmidke I, Pich A (1995) Phloem translocation of Fe, Cu, Mn, and Zn in Ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal ions, in different seedling parts. Iron Nutrition in Soils and Plants, Dev Plant Soil Sci 59:43–50

    Google Scholar 

  • Subramanian R, Gayathri S, Rathnavel C, Raj V (2012) Analysis of mineral and heavy metals in some medicinal plants collected from local market. Asian Pac J Trop Biomed 2:S74–S78

    Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) Nutrient status of paddy under chromium stress(ii) Phytoremediation of chromium by aquatic and terrestrial weeds. C R Biologies 333:597–607. doi:10.1016/j.crvi.2010.03.002

    CAS  PubMed  Google Scholar 

  • Suñe N, Sánchez G, Caffaratti S, Maine MA (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut 145:467–473

    PubMed  Google Scholar 

  • Suneela M, Radha Krishna G, Vamsi Krishna K, Manga Sai V, Bhargav V, Syama Sundara Reddy K, Srinivas DSS, Srinivas JS (2008) Water and Sediment analysis of Hussain Sagar Lake, Hyderabad. In: Sengupta M, Dalwani R (eds) Proceedings of Taal 2007: the 12th world lake conference, pp 304–306

    Google Scholar 

  • Szőllősi R, Varga IS, Erdei L, Mihalik E (2009) Cadmium induced oxidative stress andantioxidative mechanismsin germinating Indian mustard (Brassica juncea L.) seeds. Ecotoxicol Environ Saf 72:1337–1342

    PubMed  Google Scholar 

  • Szymaska M, Matraszek R (2005) Reaction of the sunflower (Helianthus annuus L.) to nickel conditioned by the way of metal penetration. Acta Sci Pol Hortorum Cultus 4(1):139–152

    Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454–1463

    CAS  PubMed  Google Scholar 

  • Tang Q, Moussa S, Cehui M, Jean-Louis M (2002) Simultaneous sludge stabilization and metal removal by metal hyper-accumulator plants. 17th WCSS, 14–21 August 2002, Thailand

    Google Scholar 

  • Tejeda S, Zarazúa G, Ávila-Pérez P, Carapia-Morales L, Martínez T (2010) Total reflection X-ray fluorescence spectrometric determination of elements in water hyacinth from the Lerma River. Spectrochimica Acta Part B 65:483–488

    Google Scholar 

  • Tewari A, Singh R, Singh NK, Rai UN (2008) Amelioration of municipal sludge by Pistia stratiotes L.: role of antioxidant enzymes in detoxification of metals. Bioresour Technol 99:8715–8721

    CAS  PubMed  Google Scholar 

  • Thangavel P, Sridevi G (eds) (2015) Environmental sustainability: role of green technologies. doi:10.1007/978-81-322-2056-5_14

  • Tiwari S, Dixit S, Verma N (2007) An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environ Monit Assess 129:253–256

    CAS  PubMed  Google Scholar 

  • Tomé FV, Rodríguez PB, Lozano JC (2008) Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:351–357

    PubMed  Google Scholar 

  • Tomé FV, Blanco Rodríguez P, Lozano JC (2009) The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions. Chemosphere 74:293–300. http://dx.doi.org/10.1016/j.chemosphere.2008.09.002

  • Topalov VD (1962) Peppermint. In: Topalov VD (ed) Essential oil and medicinal crops. Hr. G. Danov Press, Plovdiv, pp 88–104

    Google Scholar 

  • Truong P (1999) Vetiver grass technology for mine rehabilitation. Pacific Rim Vetiver Network Tech Bull 2:1–19

    Google Scholar 

  • Truong P (2000) Vetiver grass technology for environmental protection. In: Vetiver and the environment, the second international vetiver conference. China, America, Thailand

    Google Scholar 

  • Truong P (2003) Vetiver system for water quality improvement. Proceeding of 3rd international vetiver conference, 6–9 October, Guangzhou, China, pp 61–74

    Google Scholar 

  • Türker OC, Harun Böcük, Anıl Yakar (2013) The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. J Hazard Mater 252–253(15):132–141. ISSN 0304–3894, http://dx.doi.org/10.1016/j.jhazmat.2013.02.032

  • Ullah R, Bakht J, Shafi M, Iqbal M, Khan A, Saeed M (2011) Phyto-accumulation of heavy metals by sunflower (Helianthus annuus L.) grown on contaminated soil. Afr J Biotechnol 10(75):17192–17198

    CAS  Google Scholar 

  • Upadhyay RK, Panda SK (2009) Copper-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.). C R Biol 332:623–632

    CAS  PubMed  Google Scholar 

  • Upadhyay AR, Mishra VK, Pandey SK, Tripathi BD (2007) Biofiltration of secondary treated municipal wastewater in a tropical city. Ecol Eng 30:9–15

    Google Scholar 

  • Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show diVerences in binding to heavy metals in vitro. Mol Genet Genomics 281:99–108

    CAS  PubMed  Google Scholar 

  • Usha R, Vasavi A, Thishya K, Jhansi Rani S, Supraja P (2011) phytoextraction of lead from industrial effluents by Sunflower (Helianthus annuus.L). Rasayan J Chem 4(1):8–12

    CAS  Google Scholar 

  • Valitutto RS, Sella SM, Silva-Filho EV, Pereira RG, Miekeley N (2006) Accumulation of metals in macrophytes from water reservoirs of a power supply plant, Rio de Janeiro State. Brazil Water Air Soil Pollut 178:89–102

    Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2011) In situ phytoremediation of arsenic- and metal-polluted pyrite waste with field crops: effects of soil management. Chemosphere 83:1241–1248. http://dx.doi.org/10.1016/j.chemosphere.2011.03.013

  • Vamerali T, Bandiera M, Lucchini P, Dickinson NM, Mosca G (2014) Long-term phytomanagement of metal-contaminated land with field crops: integrated remediation and biofortification. Eur J Agron 53:56–66. http://dx.doi.org/10.1016/j.eja.2013.11.008

  • van der Ent A, Baker AJ, Reeves RD, Chaney RL, Anderson CW, Meech JA, Erskine PD, Simonnot MO, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015) Agromining: farming for metals in the future? Environ Sci Technol 2015(49):4773–4780. doi:10.1021/es506031u

    Google Scholar 

  • Varun M, D’Souza R, Pratas J, Paul MS (2012) Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium. Bull Environ Contam Toxicol 87:45–49

    Google Scholar 

  • Verma VK, Gupta RK, Rai JPN (2005) Biosorption of Pb and Zn from pulp and paper industry effluent by water hyacinth (Eichhornis crassipes). J Sci Ind Res 64:778–781

    CAS  Google Scholar 

  • Vesely T, Neuberg M, Trakal L, Szakova J, Tlustoa P (2012) Water lettuce Pistia stratiotes L. response to lead toxicity. Water Air Soil Pollut 223:1847–1859

    CAS  Google Scholar 

  • Vesk PA, Allaway WG (1997) Spatial variation of copper and lead concentrations of water hyacinth plants in a wetland receiving urban run-off. Aquatic Bot 59:33–44

    CAS  Google Scholar 

  • Vicente G, Martinez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogenous catalysts systems. Bioresour Technol 92:297–305

    CAS  PubMed  Google Scholar 

  • Viezcas JAS (2009) Toxicity of zinc oxide and cerium oxide nanoparticles to mesquite (Prosopis juliflora-velutina). ETD collection for University of Texas, El Paso. Paper AAI1473870. http://digitalcommons.utep.edu/dissertations/AAI1473870

  • Vikram Reddy M, Sagar Babu K, Balaram V, Satyanarayanan M (2012) Assessment of the effects of municipal sewage, immersed idols and boating on the heavy metal and other elemental pollution of surface water of the eutrophic Hussainsagar Lake (Hyderabad, India). Environ Monit Assess 184:1991–2000

    PubMed  Google Scholar 

  • Vwioko DE, Anoliefo GO, Fashemi SD (2006) Metal concentration in plant tissues of Ricinus communis L. (castor oil) grown in soil contaminated with spent lubricating oil. J Appl Sci Environ Manage 10(3):127–134

    Google Scholar 

  • Walker DJ, Clemente R, Roig A, Bernal MP (2003) The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environ Pollut 122:303–312

    CAS  PubMed  Google Scholar 

  • Watanabe T, Osaki M (2002) Mechanism of adaptation to high aluminium condition in native plant species growing in acid soils: a review. Commun Soil Sci Plant Anal 33:1247–1260

    CAS  Google Scholar 

  • Wilde EW, Brigmon RL, Dunn DL, Heitkamp MA, Dagnan DC (2005) Phytoextraction of lead from firing range soil by Vetiver grass. Chemosphere 61:1451–1457

    CAS  PubMed  Google Scholar 

  • Witters N, Mendelsohn R, Van Passel S, Van Slycken S, Weyens N, Schreurs E, Meers E, Tack F, Vanheusden B, Vangronsveld J (2012) Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass Bioenergy 39:470–477. http://dx.doi.org/10.1016/j.biombioe.2011.11.017

  • Wolverton BC, McDonald RC (1978) Bioaccumulation and detection of trace levels of cadmium in aquatic systems by Eichhornia crassipes. Environ Health Perspect 27:161–164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    CAS  PubMed  Google Scholar 

  • Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr Ecosyst Environ 102:307–318

    CAS  Google Scholar 

  • Wu F, Wanqin Yang, Jian Zhang, Liqiang Zhou (2010) Cadmium accumulation and growth responses of a poplar (Populus deltoids& Populus nigra) in cadmium contaminated purple soil and alluvial soil. J Hazard Mater 177:268–273. http://dx.doi.org/10.1016/j.jhazmat.2009.12.028

  • Wu Q, Wang S, Thangavel P, Li Q, Zheng H, Bai J, Qiu R (2011) Phytostabilization potential of Jatropha Curcas L. in polymetallic acid mine tailings. Int J Phytoremediation 13(8):788–804

    PubMed  Google Scholar 

  • Xia HP (2004) Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere 54:345–353

    CAS  PubMed  Google Scholar 

  • Xiaohai L, Yuntao G, Khan S, Gang D, Aikui C, Li L, Lei Z, Zhonghan L, Xuecan X (2008) Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. J Environ Sci 20:1469–1474

    Google Scholar 

  • Xiu-Zhen H, Dong-Mei Z, Dan-Dan L, Ping J (2012) Growth, cadmium and zinc accumulation of ornamental sunflower (Helianthus annuus L.) in contaminated soil with different amendments. Pedosphere 22(5):631–639

    Google Scholar 

  • Xu SY, Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ (2006) Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ 63:206–215. ISSN 0048–9697, http://dx.doi.org/10.1016/j.scitotenv.2005.05.030

  • Yadav SK, Juwarkar AA, Phani Kumar G, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100(20):4616–4622. ISSN 0960–8524, http://dx.doi.org/10.1016/j.biortech.2009.04.062

  • Yadav AK, Kumar N, Sreekrishnan TR, Satya S, Bishnoi NR (2010) Removal of chromium and nickel from aqueous solution in constructed wetland: mass balance, adsorption–desorption and FTIR study. Chem Eng J 160:122–128

    CAS  Google Scholar 

  • Yadav AK, Abbassi R, Kumar N, Satya S, Sreekrishnan TR, Mishra BK (2012) The removal of heavy metals in wetland microcosms: effects of bed depth, plant species, and metal mobility. Chem Eng J 211–212:501–507

    Google Scholar 

  • Yang Z (1997) The potential of using Eichhornia crassipes and Ipomoea aquatica as biomonitors in assessing heavy metal pollution in the Mae Kha canal the Mae Ping river in Chiang Mai, Northern Thailand. J Sci Soc Thailand 23:371–380

    CAS  Google Scholar 

  • Yang B, Shu WS, Ye ZH, Lan CY, Wong MH (2003) Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere 52:1593–1600

    CAS  PubMed  Google Scholar 

  • Yathavakilla SVK, Shah M, Mounicou S, Caruso JA (2005) Speciation of cationic selenium compounds in Brassica juncea leaves by strong cation-exchange chromatography with inductively coupled plasma mass spectrometry. J Chromatogr A 1100:153–159

    CAS  PubMed  Google Scholar 

  • Ye WL, Asaduzzaman Khan M, McGrath SP, Zhao F-J (2011) Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ Pollut 159:3739–3743, http://dx.doi.org/10.1016/j.envpol.2011.07.024

    CAS  PubMed  Google Scholar 

  • Yuan QH, Shi GX, Zhao J, Zhang H, Xu QS (2009) Physiological and proteomic analyses of Alternanthera philoxeroides under Zinc stress. Russ J Plant Physiol 56(4):495–502

    CAS  Google Scholar 

  • Yurekli F, Kucukbay Z (2003) Synthesis of phytochelatins in Helianthus annuus is enhanced by cadmium nitrate. Acta Bot Croat 62(1):21–25

    CAS  Google Scholar 

  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Lutts S, Abdelly C (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater 183:609–615

    CAS  PubMed  Google Scholar 

  • Zalesny Jr. RS, Wiese AH, Bauer EO, Riemenschneider DE (2009) Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate. Biomass Bioenergy 33(1):62–69. ISSN 0961–9534, http://dx.doi.org/10.1016/j.biombioe.2008.04.012

  • Zaranyika MF, Mutoko F, Murahwa H (1994) Uptake of Zn, Co, Fe and Cr by water hyacinth (Eichhornia crassipes) in Lake Chivero, Zimbabwe. Sci Total Environ 153(1–2):117–121

    CAS  Google Scholar 

  • Zengin FK, Kirbag S (2007) Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. J Environ Biol 28(3):561–566

    CAS  PubMed  Google Scholar 

  • Zhang Q, Varenyam Achal, Yatong Xu, Wei-Ning Xiang (2014a) Aquaculture wastewater quality improvement by water spinach (Ipomoea aquatica Forsskal) floating bed and ecological benefit assessment in ecological agriculture district. Aquacultural Eng 60:48–55. http://dx.doi.org/10.1016/j.aquaeng.2014.04.002

  • Zhang X, Xuehong Zhang, Bo Gao, Zhian Li, Hanping Xia, Haifang Li, Jian Li (2014b) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum × P. purpureum). Biomass Bioenergy 67:179–187. http://dx.doi.org/10.1016/j.biombioe.2014.04.030

  • Zheljazkov VD, Nelson NE (1996) Effect of heavy metals on peppermint and cornmint. Plant Soil 178:59–66

    CAS  Google Scholar 

  • Zheljazkov VD, Warman PR (2004) Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops. Environ Pollut 131(2):187–195

    CAS  PubMed  Google Scholar 

  • Zheljazkov VD, Jeliazkova EA, Kovacheva N, Dzhurmanski A (2008a) Metal uptake by medicinal plant species grown in soils contaminated by a smelter. Environ Exp Bot 64:207–216. http://dx.doi.org/10.1016/j.envexpbot.2008.07.003

  • Zheljazkov VD, Craker LE, Xing B, Nielsen NE, Wilcox A (2008b) Aromatic plant production on metal contaminated soils. Sci Total Environ 395:51–62. http://dx.doi.org/10.1016/j.scitotenv.2008.01.041

  • Zheng ZC, Li TX, Zeng FF, Zhang XZ, Yu HY, Wang YD, Liu T (2013) Accumulation characteristics of and removal of nitrogen and phosphorus from livestock wastewater by Polygonum hydropiper. Agric Water Manage 117:19–25. http://dx.doi.org/10.1016/j.agwat.2012.10.017

  • Zhi Zhong S, Li W, Man J, YanHua S (2011) Alternanthera philoxeroides might be used for bioremediating heavy metal contaminated soil. Genom Appl Biol 30(5):614–619

    Google Scholar 

  • Zhi-xin N, Li-na S, Tie-heng S, Yu-shuang L, Hong W (2007) Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J Environ Sci 19:961–967

    Google Scholar 

  • Zhu Y-G, Chen S-B, Yang J-C (2004) Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environ Int 30:351–356. http://dx.doi.org/10.1016/j.envint.2003.07.001

  • Zhuang P, Ye ZH, Lan CY, Xie ZW, Shu WS (2005) Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant and Soil 276:153–162

    CAS  Google Scholar 

  • Zuo S, Mei H, Ye L, Wang J, Ma S (2012) Effects of water quality characteristics on the algicidal property of Alternanthera philoxeroides (Mart.) Griseb. in an aquatic ecosystem. Biochem Syst Ecol 43:93–100

    CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledge the award of Pitamber Pant National Environment Fellowship for the year 2007 by the M/o Environment and Forests, GOI, New Delhi (MoEF Ref.No 17/3/2010-RE Dt 29-2-2012). The author is indebted to Dr. Eric Lichtfouse for invaluable suggestions on this Ms and inputs for improvement. Thanks are due to Dr K. Jayaram, Research Associate (until September 2013) for help in field work and literature collection. Thanks are also due to Dr G.V. Subrahmanyam, Advisor, Dr Tashi Wangdi, Addl. Director, MoEF, New Delhi for encouragement. Assistance received from several of my students and Dr Adarsh Kumar is thankfully acknowledged. Thanks are also due to TATA Steel, West Bokaro Coalfields for permission to conduct fieldwork related to mulberry cultivation on mine over dumps, Springer, Elsevier, John Wiley & Sons, CRC Press (Taylor & Francis), Vetiver network, Shrishti Eco-Research Institute, Pune Nyveli Lignite Corporation are gratefully acknowledged for valuable resources. Mr M.V. Bhaskar “Kadambari Consultants Pvt Ltd - NUALGI”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. V. Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prasad, M.N.V. (2015). Phytoremediation Crops and Biofuels. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-16742-8_7

Download citation

Publish with us

Policies and ethics