Skip to main content

Research and Development Priorities in the Face of Climate Change and Rapidly Evolving Pests

  • Chapter
Sustainable Agriculture Reviews

Abstract

Agriculture faces the challenge of meeting increasing food demands whilst simultaneously satisfying ever stringent sustainability goals. Taken together with the ever increasing rate of integrated globalisation and other anthropogenic impacts, this challenge is further complicated by climate change. Climate change is indeed increasingly recognised as a considerable risk to agriculture in the European Union, particularly with respect to direct impacts on crop production and yield stability. A major impact threat is the further risk from new and emerging invasive alien species, and potential novel pathogenically aggressive adaptations in existing indigenous pests and pathogens, which, hitherto, have been managed with conventional practices and approaches.

The introduction of several exotic pests such as Tuta absoluta, Bemisia tabaci, and Bactrocera fruit flies in Europe points out the changing trend in pathogen adaptation to new regions due to climate change thereby threatening the viability of European crop production. Likewise, slight increases in temperature heighten disease severity caused by indigenous pathogens such as Leptosphaeria maculans, Fusarium graminearum and Dickeya spp. on oilseed rape, cereals and potato, respectively in Europe. Over the last century, there has been an increased global mean temperature by 0.74 °C which is projected to rise by 3.4 °C by the end of twenty-first century. This raise in temperature has resulted in increased pest pressure in European agriculture through a shift from lower latitudes pole-wards and from lower to higher altitudes. In view of this, the development of anticipatory adaptive strategies, resulting in more resilient cropping systems, is the only alternative to tackle evolving pests under changing climate in order to ensure food security for a global population estimated to reach 9.6 billion by 2050.

The views expressed by Stephen R. H. Langrell are purely his own and may not in any circumstances be regarded as stating an official position of the European Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See http://ec.europa.eu/food/plant/strategy/index_en.htm

References

  • Aluja M, Guillén L, Rull J, Höhn H, Frey J, Graf B, Samietz J (2011) Is the alpine divide becoming more permeable to biological invasions? – insights on the invasion and establishment of the Walnut Husk Fly, Rhagoletis completa (Diptera: Tephritidae) in Switzerland. Bull Entomol Res 101:451–465. doi:10.1017/S0007485311000010

    Article  CAS  PubMed  Google Scholar 

  • Barnes AP, Wreford A, Butterworth MH, Semenov MA, Moran D, Evans N, Fitt BDL (2010) Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. J Agric Sci 148:683–694. doi:org/10.1017/S002185961000064X

    Article  Google Scholar 

  • Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, Larsson S (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl 15:2084–2096. doi:org/10.1890/04-1903

    Article  Google Scholar 

  • Beed F, Benedetti A, Cardinali G, Chakraborty S, Dubois T, Garrett K, Halewood M (2011) Climate change and micro-organism genetic resources for food and agriculture: state of knowledge, risks and opportunities. Commission on genetic resources for food and agriculture, FAO. doi:http://www.fao.org/docrep/meeting/022/mb392e.pdf

  • Bradley BA (2013) Distribution models of invasive plants over-estimate potential impact. Biol Invasions 15:1417–1429. doi:10.1007/s10530-012-0380-0

    Article  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2011) Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci U S A 98:14509–14511

    Article  Google Scholar 

  • Carlton RR, West JS, Smith P, Fitt BDL (2012) A comparison of GHG emissions from UK field crop production under selected arable systems with reference to disease control. Eur J Plant Pathol 133:333–351. doi:org/10.1007/s10658-012-9961-0

    Article  CAS  Google Scholar 

  • Chakraborty S, Dutta S (2003) How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate. New Phytol 159:733–742. doi:10.1046/j.1469-8137.2003.00842.x

    Article  CAS  Google Scholar 

  • Clements DR, DiTommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240. doi:10.1111/j.1365-3180.2011.00850.x

    Article  Google Scholar 

  • Czajkowski R, Pérombelon MCM, van Veen JA, van der Wolf JM (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60:999–1013. doi:10.1111/j.1365-3059.2011.02470.x

    Article  Google Scholar 

  • Daane KM, Caltagirone LE (1989) Biological control of black scale in olives. Calif Agric 43(1):9–11

    Google Scholar 

  • Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narvaez-Vasquez CA, Gonzalez-Cabrera J, Catalan Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215. doi:10.1007/s10340-010-0321-6

    Article  Google Scholar 

  • Dukes JS, Mooney HA (2000) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139. doi:org/10.1016/S0169-5347(98)01554-7

    Article  Google Scholar 

  • European Commission (2009a) White Paper from the European commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions – adapting to climate change: towards a European framework for action (COM(2009) 147/4)

    Google Scholar 

  • European Commission (2009b) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC

    Google Scholar 

  • European Commission (2009c) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides

    Google Scholar 

  • Fenton B, Woodford JAT, Malloch G (1998) Analysis of clonal diversity of the peach-potato aphid, Myzus persicae (Sulzer), in Scotland, UK and evidence for the existence of a predominant clone. Mol Ecol 7:1475–1487. doi:10.1046/j.1365-294x

    Article  CAS  PubMed  Google Scholar 

  • Fernandes FR, de Albuquerque LC, Giordano LDB, Boiteux LS, de Avila AC, Inoue-Nagata AK (2008) Diversity and prevalence of Brazilian bipartite begomovirus species associated to tomatoes. Virus Gene 36:251–258. doi:10.1007/s11262-007-0184-y

    Article  CAS  Google Scholar 

  • Grunwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2012) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20:131–138

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez AP, Ponti L, Cossu QA (2009) Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim Change 95:195–217. doi:10.1007/s10584-008-9528-4

    Article  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA et al (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370. doi:10.2134/agronj2010.0303

    Article  Google Scholar 

  • Hovmøller MS, Yahyaoui AH, Milus EA, Justesen AF (2008) Rapid global spread of two aggressive strains of a wheat rust fungus. Mol Ecol 17:3818–3826. doi:10.1111/j.1365-294X.2008.03886.x

    Article  PubMed  Google Scholar 

  • Hovmøller MS, Walter S, Justesen AF (2010) Escalating threat of wheat rusts. Science 329:369. doi:10.1126/science.1194925

    Article  PubMed  Google Scholar 

  • Hovmøller MS, Sørensen CK, Walter S, Justesen AF (2011) Diversity of Puccinia striiformis on cereals and grasses. Annu Rev Phytopathol 49:197–217. doi:10.1146/annurev-phyto-072910-095230

    Article  PubMed  Google Scholar 

  • Huang Y-J, Pirie EJ, Evans N et al (2009) Quantitative resistance to symptomless growth of Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape). Plant Pathol 58:314–323. doi:10.1111/j.1365-3059.2008.01957.x

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quantum Biol 22:415–427. doi:10.1101/SQB.1957.022.01.039

    Article  Google Scholar 

  • Hyvönen T, Luoto M, Uotila P (2012) Assessment of weed establishment risk in a changing European climate. Agric Food Sci 21:348–360

    Google Scholar 

  • IPCC (2007) Climate change, 73 pp. doi:http://www.ipcc.ch/ipccreports/ar4-syr.htm

  • Klerks MM, van Gent-Pelzer M, Franz E et al (2007) Physiological and molecular responses of Lactuca sativa to colonization by Salmonella enterica Serovar Dublin [down-pointing small open triangle]. Appl Environ Microbiol 73:4905–4914. doi:10.1128/AEM.02522-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Licciardi S, Assogba-Komlan F, Sidick I et al (2008) A temporary tunnel screen as an eco-friendly method for small-scale growers to protect cabbage crop in Benin. Int J Trop Insect Sci 27:152–158. doi:org/10.1017/S1742758407883184

    Article  Google Scholar 

  • Liu D, Trumble JT (2007) Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). Entomol Exp Appl 123:35–42. doi:10.1111/j.1570-7458.2007.00521.x

    Article  Google Scholar 

  • Madgwick JW, West JS, White RP et al (2011) Impacts of climate change on wheat anthesis and Fusarium ear blight in the UK. J Plant Pathol 129:117–131. doi:10.1007/s10658-010-9739-1

    Article  Google Scholar 

  • Malcolm JR, Markham A, Neilson RP, Garaci M (2002) Estimated migration rates under scenarios of global climate change. J Biogeogr 29:835–849. doi:10.1046/j.1365-2699.2002.00702.x

    Article  Google Scholar 

  • Maron JL, Vilà M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecol Monogr 74:261–280. doi:org/10.1890/03-4027

    Article  Google Scholar 

  • McDonald A, Riha S, Ditommaso A, Degaetano A (2009) Climate change and the geography of weed damage: analysis of US maize systems suggests the potential for significant range transformations. Agric Ecosyst Environ 130:131–140. doi:org/10.1016/j.agee.2008.12.007

    Article  Google Scholar 

  • Milus EA, Kristensen K, Hovmøller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94. doi:10.1094/PHYTO-99-1-0089

    Article  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43. doi:10.1017/S0021859605005708

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary response to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Radcliffe EB, Ragsdale DW (2002) Aphid-transmitted potato viruses: the importance of understanding vector biology. Am J Potato Res 79:353–386. doi:10.1007/BF02870173

    Article  Google Scholar 

  • Rejmanek M (1996) A theory of seed plant invasiveness: the first sketch. Biol Conserv 78:171–181. doi:org/10.1016/0006-3207(96)00026-2

    Article  Google Scholar 

  • Samietz S, Stoeckli S, Hirschi M, Spirig C, Höhn H, Calanca P, Rotach MW (2015) Modelling the impact of climate change on sustainable management of the codling moth (Cydia pomonella L.) as key pest in apple. Acta Hortic 1068:35–42

    Google Scholar 

  • Sarfraz M, Keddie AB, Dosdall LM (2005) Biological control of the diamondback moth, Plutella xylostella: a review. Biocontrol Sci Technol 15:763–789. doi:10.1080/09583150500136956

    Article  Google Scholar 

  • Scherm H (2004) Climate change: can we predict the impacts on plant pathology and pest management? Can J Plant Pathol 26:267–273. doi:10.1080/07060660409507143

    Article  Google Scholar 

  • Shaw MW, Osborne TM (2011) Geographic distribution of plant pathogens in response to climate change. Plant Pathol 60:31–43. doi:10.1111/j.1365-3059.2010.02407.x

    Article  Google Scholar 

  • Slayton RB, Turabelidze G, Bennett SD, Schwensohn CA, Yaffee AQ et al (2013) Outbreak of Shiga toxin-producing Escherichia coli (STEC) O157:H7 associated with Romaine Lettuce Consumption, 2011. PLoS One 8(2):e55300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stephens AEA, Kriticos DJ, Leriche A (2007) The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bull Entomol Res 97:369–378. doi:10.1007/978-3-642-27281-3_30

    Article  CAS  PubMed  Google Scholar 

  • Stoeckli S, Hirschi M, Spirig C, Calanca P, Rotach MW (2012) Impact of climate change on voltinism and prospective diapause induction of a global pest insect – Cydia pomonella (L.). PLoS One 7:e35723. doi:10.1371/journal.pone.0035723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stratonovitch P, Storkey J, Semenov MA (2012) A process-based approach to modelling impacts of climate change on the damage niche of an agricultural weed. Glob Chang Biol 18:2071–2080. doi:10.1111/j.1365-2486.2012.02650.x

    Article  Google Scholar 

  • Tahiri A, Sekkat A, Bennani A, Granier M, Delvare G, Peterschmitt M (2006) Distribution of tomato-infecting begomoviruses and Bemisia tabaci biotypes in Morocco. Ann Appl Biol 149:175–186. doi:10.1111/j.1744-7348.2006.00083.x

    Article  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152. doi:org/10.1016/j.ppees.2007.09.004

    Article  Google Scholar 

  • Trumble JT, Butler CD (2009) Climate change will exacerbate California’s insect pest problems. Calif Agric 63:73–78

    Article  Google Scholar 

  • Van Overbeek LS, Van Doorn J, Wichers JH, Van Amerongen A, Van Roermond HJW, Willemsen PTJ (2014) The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 5:1–17. doi:10.3389/fmicb.2014.00104

    Google Scholar 

  • Vayssieres JF, Sinzogan A, Korie S, Ouagoussounon I, Thomas-Odjo A (2009) Effectiveness of spinosad bait sprays (GF-120) in controlling mango-infesting fruit flies (Diptera: Tephritidae) in Benin. J Econ Entomol 102:515–521. doi:org/10.1603/029.102.0208

    Article  CAS  PubMed  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    Article  CAS  PubMed  Google Scholar 

  • West JS, Townsend JA, Stevens M, Fitt BDL (2012) Comparative biology of different plant pathogens to estimate effects of climate change of crop diseases in Europe. Eur J Plant Pathol 133:315–331. doi:10.1007/s10658-011-9932-x

    Article  Google Scholar 

  • Willmer P, Stone G, Johnston I (2004) Environmental physiology of animals, 2nd edn. Wiley-Blackwell, Oxford, 768 pp

    Google Scholar 

  • Woodford JAT (1998) The impact of cropping policy on methods to control potato leafroll virus. Aspect Appl Biol 17:163–171

    Google Scholar 

  • Zappalà L, Biondi A, Alma A, Al-Jboory IJ, Arnò J, Bayram A, Chailleux A, El-Arnaouty A, Gerling D, Guenaoui Y, Shaltiel-Harpaz L, Siscaro G, Stavrinides M, Tavella L, Vercher Aznar R, Urbaneja A, Desneux N (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle-East, and their potential use in pest control strategies. J Pest Sci 86:635–647. doi:10.1007/s10340-013-0531-9

    Article  Google Scholar 

  • Zhou XL, Harrington R, Woiwod IP, Perry JN, Bale JS, Clark SJ (1995) Effects of temperature on aphid phenology. Glob Chang Biol 1:303–313. doi:10.1111/j.1365-2486.1995.tb00029.x

    Article  Google Scholar 

  • Ziska LH (2010) Elevated carbon dioxide alters chemical management of Canada thistle in no-till soybean. Field Crop Res 199:299–303. doi:org/10.1016/j.fcr.2010.07.018

    Article  Google Scholar 

  • Ziska LH (2011) Global climate change and carbon dioxide: assessing weed biology and management. In: Hillel D (ed) Handbook on climate change and agroecosystems: impacts, adaptation, and mitigation. Imperial College Press, London, pp 191–208

    Google Scholar 

Download references

Acknowledgements

This report is the fruit of a joint initiative of the Institute for Prospective Technological Studies, one of the institutes in the European Commission’s Joint Research Centre, and the ENDURE European Research Group, which brings together some of Europe’s leading agricultural research, teaching and extension institutes with a special interest in IPM. It is built on a technical report and a workshop of international experts, and the authors would like to thank all those who contributed to what we believe is a valuable and much-needed insight into the research and policy implications of meeting this twenty-first century challenge. The authors wish to thank Andrew Lewer for his initial collaboration in the construction of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Messean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barzman, M. et al. (2015). Research and Development Priorities in the Face of Climate Change and Rapidly Evolving Pests. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-16742-8_1

Download citation

Publish with us

Policies and ethics