Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 902))

  • 2651 Accesses

Abstract

In this chapter, based on the lectures by Andreas Winter, we survey four different areas in quantum information theory in which ideas from the theory of operator systems and operator algebras play a natural role. The first is the problem of zero-error communication over quantum channels, which makes use of concepts from operator systems and quantum error correction. Second, we study the strong subadditivity property of quantum entropy and the central role played by the structure theorem of matrix algebras in understanding its equality case. Next, we describe different norms on quantum states and the corresponding induced norms on quantum channels. Finally, we look at matrix-valued random variables, prove Hoeffding-type tail bounds and describe the applications of such matrix tail bounds in the quantum information setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A remark on notation: throughout this chapter we use I to denote the identity operator and \(\mathbb{I}\) to denote the identity map, for example, \(\mathbb{I}_{A}: \mathcal{B}(\mathcal{H}_{A}) \rightarrow \mathcal{B}(\mathcal{H}_{A})\).

  2. 2.

    The Hilbert-Schmidt inner product between two operators A,B is simply the inner product defined by the trace, namely, \(\langle A,B\rangle = \text{Tr}[A^{\dag }B]\).

  3. 3.

    The dual of a convex program [3, 4] is obtained by introducing a variable for each constraint, and a constraint for every co-efficient in the objective function. Thus, the objective function and the constraints get interchanged in the dual problem.

  4. 4.

    For any CPTP map \(\mathcal{T}\) in a Kraus representation {T i }, the adjoint map is another CPTP map with Kraus operators {T i †}.

  5. 5.

    This is essentially a mean ergodic theorem for the dual of a quantum operation. See [11] for a proof.

  6. 6.

    Any convex, centrally symmetric subset \(\mathbb{M} \subset [-\mathcal{I},\mathcal{I}] \subset \mathcal{B}(\mathcal{H})\) with the property \(-\mathbb{M} = \mathbb{M}\), gives rise to a norm, the dual of which is a measure of the distinguishability.

  7. 7.

    We could equally well have considered unitaries of the type \(I_{A} \otimes U_{B}\), and the same results would hold.

References

  1. R. Ahlswede, A. Winter, Strong converse for identification via quantum channels. IEEE Trans. Inf. Theory 48(3), 569–579 (2002)

    MATH  MathSciNet  Google Scholar 

  2. S. Beigi, P. Shor, On the complexity of computing zero-error and Holevo capacity of quantum channels. ArXiv preprint arXiv:0709.2090 (2007)

    Google Scholar 

  3. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  4. S. Boyd, L. Vandenberghe, Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    MATH  MathSciNet  Google Scholar 

  5. T.S. Cubitt, J. Chen, A.W. Harrow, Superactivation of the asymptotic zero-error classical capacity of a quantum channel. IEEE Trans. Inf. Theory 57(12), 8114–8126 (2011)

    MathSciNet  Google Scholar 

  6. T.S. Cubitt, D. Leung, W. Matthews, A. Winter, Improving zero-error classical communication with entanglement. Phys. Rev. Lett. 104, 230503 (2010)

    ADS  Google Scholar 

  7. D.P. Divincenzo, D.W. Leung, B.M. Terhal, Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580–598 (2002)

    MATH  MathSciNet  Google Scholar 

  8. R. Duan, Super-activation of zero-error capacity of noisy quantum channels. ArXiv preprint arXiv:0906.2527 (2009)

    Google Scholar 

  9. R. Duan, S. Severini, A. Winter, Zero-error communication via quantum channels, non-commutative graphs, and a quantum Lovász number. IEEE Trans. Inf. Theory 59, 1164–1174 (2013)

    MathSciNet  Google Scholar 

  10. B. Groisman, S. Popescu, A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    ADS  MathSciNet  Google Scholar 

  11. P. Hayden, R. Jozsa, D. Petz, A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality. Commun. Math. Phys. 246(2), 359–374 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  12. A.S. Holevo, Information-theoretical aspects of quantum measurement. Problemy Peredachi Informatsii 9(2), 31–42 (1973); C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976)

    Google Scholar 

  13. M. Horodecki, J. Openheim, A. Winter, Partial quantum information. Nature 436, 673–676 (2005)

    Article  ADS  Google Scholar 

  14. M. Horodecki, J. Openheim, A. Winter, Quantum state merging and negative information. Commun. Math. Phys. 269, 107–136 (2007)

    ADS  MATH  Google Scholar 

  15. M. Koashi, N. Imoto, Operations that do not disturb partially known quantum states. Phys. Rev. A 66, 022318 (2002)

    ADS  MathSciNet  Google Scholar 

  16. S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    MATH  MathSciNet  Google Scholar 

  17. E.H. Lieb, M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)

    ADS  MathSciNet  Google Scholar 

  18. G. Lindblad, Completely positive maps and entropy inequalities. Commun. Math. Phys. 40(2), 147–151 (1975)

    ADS  MATH  MathSciNet  Google Scholar 

  19. G. Lindblad, A general no-cloning theorem. Lett. Math. Phys. 47(2), 189–196 (1999)

    MATH  MathSciNet  Google Scholar 

  20. L. Lovász, On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979)

    MATH  Google Scholar 

  21. R.A.C. Medeiros, R. Alleaume, G. Cohen, F.M. de Assis, Quantum states characterization for the zero-error capacity. ArXiv pre-print:quant-ph/0611042 (2006)

    Google Scholar 

  22. D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105(1), 123–131 (1986)

    ADS  MATH  MathSciNet  Google Scholar 

  23. D. Petz, Sufficiency of channels over von Neumann algebras. Q. J. Math. 39(1), 97 (1988)

    Google Scholar 

  24. M.B. Ruskai, Inequalities for quantum entropy: a review with conditions for equality. J. Math. Phys. 43, 4358 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  25. B. Schumacher, Quantum coding. Phys. Rev. A 51(4), 2738 (1995)

    Google Scholar 

  26. M. Takesaki, Theory of Operator Algebras I (Springer, New York, 1979)

    Book  MATH  Google Scholar 

  27. J.A. Tropp, User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12(4), 389–434 (2012)

    MATH  MathSciNet  Google Scholar 

  28. A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977)

    ADS  MATH  MathSciNet  Google Scholar 

  29. H. Umegaki, Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math. J. 14(2), 59–85 (1962)

    MATH  MathSciNet  Google Scholar 

  30. L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, V.P., Mandayam, P., Sunder, V.S. (2015). Quantum Information Theory. In: The Functional Analysis of Quantum Information Theory. Lecture Notes in Physics, vol 902. Springer, Cham. https://doi.org/10.1007/978-3-319-16718-3_4

Download citation

Publish with us

Policies and ethics