Skip to main content

Spectral Inequalities for Quantum Graphs

  • Conference paper
Mathematical Technology of Networks

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 128))

  • 873 Accesses

Abstract

We review our joint work with Evans Harrell on semiclassical and universal inequalities for quantum graphs. The proofs of these inequalities are based on an abstract trace inequality for commutators of operators. In this article we give a new proof of this abstract trace inequality. Another ingredient in proving semiclassical and universal inequalities is an appropriate choice of operators in this trace inequality. We provide a new approximation method for such a choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizenman, M., Elliott H. Lieb, E.H.: On semiclassical bounds for eigenvalues of Schrödinger operators. Phys. Lett. A 66(6), 427–429 (1978)

    Google Scholar 

  2. Ashbaugh, M.S.: The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H. C. Yang. In: Spectral and Inverse Spectral Theory (Goa, 2000). Proceedings Indian Academy of Science-Mathematics, vol. 112, pp. 3–30. Indian Academy Science, Goa (2002)

    Google Scholar 

  3. Berkolaiko, G., Carlson, R., Fulling, S.A., Kuchment, P. (eds.): Quantum Graphs and Their Applications. Contemporary Mathematics, vol. 415. American Mathematical Society, Providence, RI (2006)

    Google Scholar 

  4. Bethe, H.A.: Intermediate Quantum Mechanics. Notes by R. W. Jackiw. W. A. Benjamin, New York-Amsterdam (1964)

    Google Scholar 

  5. Demirel, S., Harell II, E.M.: On semiclassical and universal inequalities for eigenvalues of quantum graphs. Rev. Math. Phys. 22, 305–329 (2010)

    Google Scholar 

  6. Ekholm, T., Frank, R.L., Kovařík, H.: Eigenvalue estimates for Schrödinger operators on metric trees. Adv. Math. 226(6), 5165–5197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplyaev, A. (eds.): Analysis on Graphs and Its Applications. Proceedings of Symposia in Pure Mathematics, vol. 77. American Mathematical Society, Providence (2008) [Papers from the program held in Cambridge, January 8–June 29 (2007)]

    Google Scholar 

  8. Frank, R.L., Kovařík, H.: Heat kernels of metric trees and applications. arXiv:1108.6145v1

    Google Scholar 

  9. Ham, N.S., Ruedenberg, K.: Electronic interaction in the free-electron network model for conjugated systems. I. Theory. J. Chem. Phys. 25, 1–13 (1956)

    MathSciNet  Google Scholar 

  10. Harrell II, E.M., Lotfi Hermi, L.: Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues. J. Funct. Anal. 254(12), 3173–3191 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harrell II, E.M., Stubbe, J.: On trace identities and universal eigenvalue estimates for some partial differential operators. Trans. Am. Math. Soc. 349(5), 1797–1809 (1997)

    Article  MathSciNet  Google Scholar 

  12. Harrell II, E.M., Stubbe, J.: Universal bounds and semiclassical estimates for eigenvalues of abstract Schrödinger operators. SIAM J. Math. Anal. 42(5), 2261–2274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuchment, P.: Quantum graphs: an introduction and a brief survey. In: Analysis on Graphs and Its Applications. Proceeding of Symposium Pure Mathematics, pp. 291–314. American Mathematical Society, Providence (2008)

    Google Scholar 

  14. Levitin, M., Parnovski, L.: Commutators, spectral trace identities, and universal estimates for eigenvalues. J. Funct. Anal. 192(2), 425–445 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pauling, L.: The diamagnetic anistropy of aromatic molecules. J. Chem. Phys. 4(10), 673–677 (1936)

    Article  Google Scholar 

  16. Payne, L.E., Pólya, G., Weinberger, H.F.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289–298 (1956)

    MATH  Google Scholar 

  17. Stubbe, J.: Universal monotonicity of eigenvalue moments and sharp Lieb-Thirring inequalities. J. Eur. Math. Soc. (JEMS) 12(6), 1347–1353 (2010)

    Google Scholar 

  18. Thirring, W.: A Course in Mathematical Physics. Quantum Mechanics of Atoms and Molecules [Translated from the German by Evans M. Harrell], vol. 3, Lecture Notes in Physics, 141]. Springer, New York (1981)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Evans Harrell with whom the results reviewed in Sect. 2 were obtained and to Timo Weidl who suggested that there might be an alternative proof of the trace inequality. Many thanks to Delio Mugnolo for organizing the wonderful conference “Mathematical Technology of Networks”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semra Demirel-Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Demirel-Frank, S. (2015). Spectral Inequalities for Quantum Graphs. In: Mugnolo, D. (eds) Mathematical Technology of Networks. Springer Proceedings in Mathematics & Statistics, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-16619-3_6

Download citation

Publish with us

Policies and ethics