Skip to main content

System/Environment Duality of Nonequilibrium Network Observables

  • Conference paper
Mathematical Technology of Networks

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 128))

  • 882 Accesses

Abstract

On networks representing probability currents between states of a system, we generalize Schnakenberg’s theory of nonequilibrium observables to nonsteady states, with the introduction of a new set of macroscopic observables that, for planar graphs, are related by a duality. We apply this duality to the linear regime, obtaining a dual proposition for the minimum entropy production principle, and to discrete electromagnetism, finding that it exchanges fields with sources. We interpret duality as reversing the role of system and environment, and discuss generalization to nonplanar graphs. The results are based on two theorems regarding the representation of bilinear and quadratic forms over the edge vector space of an oriented graph in terms of observables associated to cycles and cocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48, 571 (1976)

    Article  MathSciNet  Google Scholar 

  2. Hill, T.L.: Free Energy Transduction and Biochemical Cycle Kinetics. Dover, New York (2005)

    Google Scholar 

  3. Schnakenberg, J.: Thermodynamic Network Analysis of Biological Systems. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  4. Polettini, M., Esposito, M.: Irreversible thermodynamics of open chemical networks I: emergent cycles and broken conservation laws. J. Chem. Phys. 141, 024117 (2014)

    Article  Google Scholar 

  5. Andrieux, D., Gaspard, P.: Fluctuation theorem and Onsager reciprocity relations. J. Chem. Phys. 121, 6167 (2004)

    Article  Google Scholar 

  6. Andrieux, D., Gaspard, P.: Fluctuation theorem and mesoscopic chemical clocks. J. Chem. Phys. 128, 154506 (2008)

    Article  Google Scholar 

  7. Liepelt, S., Lipowsky, R.: Steady-state balance conditions for molecular motor cycles and stochastic nonequilibrium processes. Europhys. Lett. 77, 50002 (2007)

    Article  Google Scholar 

  8. Liepelt, S., Lipowsky, R.: Kinesin’s network of chemomechanical motor cycles. Phys. Rev. Lett. 98, 258102 (2007)

    Article  Google Scholar 

  9. Faggionato, A., Di Pietro, D.: Gallavotti-cohen-type symmetry related to cycle decompositions for Markov chains and biochemical applications. J. Stat. Phys. 143, 11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Andrieux, D., Gaspard, P.: A fluctuation theorem for currents and non-linear response coefficients. J. Stat. Mech. P01011 (2006)

    Google Scholar 

  11. Andrieux, D., Gaspard, P.: Fluctuation theorem for currents and Schnakenberg network theory. J. Stat. Phys. 127, 107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Qian, H., Qian, M.: Pumped biochemical reactions, nonequilibrium circulation, and stochastic resonance. Phys. Rev. Lett. 84, 2271 (2000)

    Article  Google Scholar 

  13. Qian, H.: Cycle kinetics, steady state thermodynamics and motors—a paradigm for living matter physics. J. Phys. 17, S3783 (2005)

    Google Scholar 

  14. Jiang, D.-J., Qian, M., Qian, M.-P.: Mathematical Theory of Nonequilibrium Steady States. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  15. Kalpazidou, S.: Cycle Representations of Markov Processes. Springer, New York (1995)

    Book  MATH  Google Scholar 

  16. Polettini, M.: Nonequilibrium thermodynamics as a gauge theory. Eur. Phys. Lett. 97, 30003 (2012)

    Article  Google Scholar 

  17. Zia, R.K.P., Schmittmann, B.: A possible classification of nonequilibrium steady states. J. Phys. A 39, L407 (2006)

    Article  MathSciNet  Google Scholar 

  18. Seifert, U.: Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423 (2008)

    Article  MATH  Google Scholar 

  19. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974)

    Book  MATH  Google Scholar 

  20. Nakanishi, N.: Graph Theory and Feynman Integrals. Gordon and Breach, New York (1971)

    Google Scholar 

  21. Brunnemann, J., Rideout, D.: Oriented matroids-combinatorial structures underlying loop quantum gravity. Classical and Quantum Gravity 27, 205008 (2010)

    Article  MathSciNet  Google Scholar 

  22. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Surveys in Combinatorics 2005, London Math. Soc. Lecture Note Ser. vol. 327, p. 173. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  23. Iyer, T.S.K.V.: Circuit Theory. Tata Mac Graw-Hill, New Dehli (2006)

    Google Scholar 

  24. Bjorken, J., Drell, S.: Relativistic Quantum Fields. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  25. David, F., Tuan, R.H.: A duality property of planar Feynman diagrams. Phys. Lett. B 158, 435 (1985)

    Article  MathSciNet  Google Scholar 

  26. Wu, F.Y.: The potts model. Rev. Mod. Phys. 54, 235 (1982)

    Article  Google Scholar 

  27. Polettini, M.: Macroscopic constraints for the minimum entropy production principle. Phys. Rev. E 84, 051117 (2011)

    Article  Google Scholar 

  28. Klein, M., Meijer, P.H.E.: Principle of minimum entropy production. Phys. Rev. 96, 250 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  29. Timm, C.: Gauge theory for the rate equations: electrodynamics on a network. Phys. Rev. Lett. 98, 070604 (2007)

    Article  Google Scholar 

  30. McKee, T.A.: The logic of graph-theoretic duality. Am. Math. Mon. 92(7), 457 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Esposito, M., van den Broeck, C.: The three faces of the second law: I. Master equation formulation. Phys. Rev. E 82, 011143 (2010)

    Google Scholar 

  32. Hinrichsen, H., Gogolin, C., Janotta, P.: Non-equilibrium dynamics, thermalization and entropy production. J. Phys. 297, 012011 (2011)

    Google Scholar 

  33. Desburn, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: Grinspun, E., Schroder, P., Desbrun, M. (eds.) Discrete Differential Geometry. ACM SIGGRAPH, Boston (2006)

    Google Scholar 

  34. Shai, O., Pennock, G.R.: Extension of graph theory to the duality between static systems and mechanisms. J. Mech. Des. 128(1), 179 (2006)

    Article  Google Scholar 

  35. Shai, O., Pennock, G.R.: A study of the duality between planar kinematics and statics. J. Mech. Des. 128(3), 587 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The author warmly thanks A. Maritan and D. Andrieux for discussion, M. Esposito and M. Dalmonte for helping out with the first drafts. The research was partly supported by the National Research Fund Luxembourg in the frame of the AFR Postdoc Grant 5856127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Polettini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Polettini, M. (2015). System/Environment Duality of Nonequilibrium Network Observables. In: Mugnolo, D. (eds) Mathematical Technology of Networks. Springer Proceedings in Mathematics & Statistics, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-16619-3_13

Download citation

Publish with us

Policies and ethics