Skip to main content

Abstract

In this chapter, we give a survey on some results from the theory of polar foliations, also called singular Riemannian foliations with sections. This theory is a generalization of the classical theory of adjoint actions (presented in Chap. 4), and several results in this chapter are extensions of its results. Since our main goal is to provide a flavor of this new field, to not lose sight of the big picture, we only give some sketches of proofs without going into technical details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The linear connection on O(T Σ) is defined as follows. For a fixed frame ξ p , set \(\widehat{\mathcal{H}}_{\xi _{p}}\) as the space of all vectors \(\widehat{\alpha }'(0)\), where \(\widehat{\alpha }\) is the parallel transport of ξ p along a curve \(\alpha: [0, 1] \rightarrow \varSigma\) with α(0) = p. 

  2. 2.

    This is possible since the set of regular leaves is open and dense in M.

  3. 3.

    Alternatively, one can prove that dη t ξ has constant rank for t close to 1 using ideas presented in the proof of Theorem 5.63.

  4. 4.

    The metric \(\mathtt{g}_{0}\) is such that \(\exp _{x}\) becomes an isometry.

  5. 5.

    I.e., by composing the inverse of the normal exponential map \(\exp _{x}: B_{\epsilon }(0) \cap T_{x}S_{x} \rightarrow S_{x}\) with an isometry between \(T_{x}S_{x}\) and \(\mathbb{R}^{n}\).

  6. 6.

    I.e., a quotient of a simply-connected Riemannian manifold by a reflection group in the classical sense , i.e., a discrete group of isometries generated by reflections acting properly and effectively.

  7. 7.

    I.e., for any two points p and q in Ω, every minimal geodesic segment between p and q lies entirely in Ω.

  8. 8.

    For details on compact rank one symmetric spaces, see Example 6.10 .

  9. 9.

    According to Thorbergsson [209], the term isoparametric hypersurface was introduced by Levi-Civita and \(\|\mathrm{grad}\ f\|^{2}\) and Δ f were called the differential parameters of f. We stress that, in modern references, the term isoparametric hypersurface is used for level sets of isoparametric functions, see Remark 5.58.

  10. 10.

    Here, a point of a section is called regular if there exists only one local section that contains p, i.e., if two local sections σ and \(\widetilde{\sigma }\) contain p, then they have the same germ at p.

  11. 11.

    Here, a basic function is a function constant along the leaves.

References

  1. M.M. Alexandrino, Integrable Riemannian submersion with singularities. Geom. Dedicata 108, 141–152 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. M.M. Alexandrino, Singular Riemannian foliations with sections. Ill. J. Math. 48(4), 1163–1182 (2004)

    MATH  MathSciNet  Google Scholar 

  3. M.M. Alexandrino, Generalizations of isoparametric foliations. Mat. Contemp. 28, 29–50 (2005)

    MATH  MathSciNet  Google Scholar 

  4. M.M. Alexandrino, Proofs of conjectures about singular Riemannian foliations. Geom. Dedicata 119(1), 219–234 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. M.M. Alexandrino, Singular holonomy of singular Riemannian foliations with sections. Mat. Contemp. 33, 23–55 (2007)

    MATH  MathSciNet  Google Scholar 

  6. M.M. Alexandrino, Desingularization of singular Riemannian foliation. Geom. Dedicata 149, 397–416 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. M.M. Alexandrino, On polar foliations and fundamental group. Results Math. 60(1–4), 213–223 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. M.M. Alexandrino, Polar foliations and isoparametric maps. Ann. Glob. Anal. Geom. 41(2), 187–198 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. M.M. Alexandrino, R. Briquet, D. Töben, Progress in the theory of singular Riemannian foliations. Differ. Geom. Appl. 31, 248–267 (2013)

    Article  MATH  Google Scholar 

  10. M.M. Alexandrino, C. Gorodski, Singular Riemannian foliations with sections, transnormal maps and basic forms. Ann. Glob. Anal. Geom. 32(3), 209–223 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. M.M. Alexandrino, M.A. Javaloyes, On closed geodesics in the leaf space of singular Riemannian foliations. Glasg. Math. J. 53, 555–568 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. M.M. Alexandrino, A. Lytchak, On smoothness of isometries between orbit spaces, in Riemannian Geometry and Applications, Proceedings RIGA (Ed. Univ. Bucureşti, 2011), pp. 17–28. arXiv:1107.2563

    Google Scholar 

  13. M.M. Alexandrino, M. Radeschi, Smoothness of isometric flows on orbit spaces and applications to the theory of foliations (2014, preprint). arXiv:1301.2735

    Google Scholar 

  14. M.M. Alexandrino, M. Radeschi, Mean curvature flow of singular Riemannian foliations (2014, preprint). arXiv:1408.543

    Google Scholar 

  15. M.M. Alexandrino, M. Radeschi, Isometries between leaf spaces. Geom. Dedicata 174, 193–201 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  16. M.M. Alexandrino, T. Töben, Singular Riemannian foliations on simply connected spaces. Differ. Geom. Appl. 24, 383–397 (2006)

    Article  MATH  Google Scholar 

  17. M.M. Alexandrino, T. Töben, Equifocality of singular Riemannian foliation. Proc. Am. Math. Soc. 136, 3271–3280 (2008)

    Article  MATH  Google Scholar 

  18. H. Boualem, Feuilletages riemanniens singuliers transversalement integrables. Compositio Mathematica 95, 101–125 (1995)

    MATH  MathSciNet  Google Scholar 

  19. É. Cartan, Familles de surfaces isoparamétriques dans les espaces á courbure constante. Ann. di Mat. 17, 177–191 (1938)

    Article  MathSciNet  Google Scholar 

  20. É. Cartan, Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions. Revista Univ. Tucumán 1, 5–22 (1940)

    MATH  MathSciNet  Google Scholar 

  21. S. Carter, A. West, Generalised Cartan polynomials. J. Lond. Math. Soc. 32, 305–316 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. M.W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math. 117, 293–324 (1983)

    Article  MATH  Google Scholar 

  23. F. Fang, K. Grove, G. Thorbergsson, Tits Geometry and Positive Curvature (2012, preprint). arXiv:1205.6222 [math.DG]

    Google Scholar 

  24. J. Ge, Z. Tang, Isoparametric functions on exotic spheres. J. Reine Angew. Math. 683, 161–180 (2013)

    MATH  MathSciNet  Google Scholar 

  25. J. Ge, Z. Tang, Geometry of isoparametric hypersurfaces in Riemannian manifolds. Asian J. Math. 18(1), 117–125 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. C. Gorodski, A Metric Approach to Representations of Compact Lie Groups (2014, preprint), http://www.ime.usp.br/~gorodski/publications.html, or http://math.osu.edu/file/metric-approach-representations-compact-lie-groups.pdf

  27. F. Gozzi, Low dimensional polar actions. Geom. Dedicata (to appear). arXiv:1407.0638

    Google Scholar 

  28. D. Gromoll, G. Walschap, Metric Foliations and Curvatures. Progress in Mathematics, vol. 268 (Birkhäuser, 2009)

    Google Scholar 

  29. K. Grove, D. Gromoll, The low-dimensional metric foliations of Euclidean spheres. J. Differ. Geom. 28(1), 143–156 (1988)

    MATH  MathSciNet  Google Scholar 

  30. K. Grove, B. Wilking, W. Ziller, Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Differ. Geom. 78(1), 33–111 (2008)

    MATH  MathSciNet  Google Scholar 

  31. K. Grove, W. Ziller, Polar manifolds and actions. J. Fixed Point Theory Appl. 11(2), 279–313 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. C.E. Harle, Isoparametric families of submanifolds. Bol. Soc. Brasil. Mat. 13, 491–513 (1982)

    Article  MathSciNet  Google Scholar 

  33. E. Heintze, X. Liu, C. Olmos, Isoparametric submanifolds and a Chevalley–type restriction theorem, in Integrable Systems, Geometry, and Topology. AMS/IP Studies in Advanced Mathematics, vol. 36 (American Mathematical Society, Providence, 2006), pp. 151–190

    Google Scholar 

  34. A. Lytchak, Singular Riemannian Foliations on Space Without Conjugate Points. Differential Geometry (World Scientific Publishing, Hackensack, 2009), pp. 75–82

    Book  Google Scholar 

  35. A. Lytchak, Geometric resolution of singular Riemannian foliations. Geom. Dedicata 149, 379–395 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Lytchak, Polar foliations on symmetric spaces. Geom. Funct. Anal. 24, 1298–1315 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Lytchak, G. Thorbergsson, Variationally complete actions on nonnegatively curved manifolds. Ill. J. Math. 51(2), 605–615 (2007)

    MATH  MathSciNet  Google Scholar 

  38. A. Lytchak, G. Thorbergsson, Curvature explosion in quotients and applications. J. Differ. Geom. 85(1), 117–139 (2010)

    MATH  MathSciNet  Google Scholar 

  39. R. Miyaoka, Transnormal functions on a Riemannian manifold. Differ. Geom. Appl. 31, 130–139 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. I. Moerdijk, J. Mrčun, Introduction to Foliations and Lie Groupoids. Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge/New York, 2003)

    Google Scholar 

  41. P. Molino, Desingularisation Des Feuilletages Riemanniens. Am. J. Math. 106(5), 1091–1106 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  42. P. Molino, Riemannian Foliations. Progress in Mathematics, vol. 73 (Birkhäuser, Boston, 1988)

    Google Scholar 

  43. P. Molino, M. Pierrot, Théorèmes de slice et holonomie des feuilletages Riemanniens singuliers. Ann. Inst. Fourier (Grenoble) 37(4), 207–223 (1987)

    Google Scholar 

  44. M. Mucha, Polar actions on certain principal bundles over symmetric spaces of compact type. Proc. Am. Math. Soc. 139(6), 2249–2255 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  45. L. Ni, Notes on Transnormal Functions on Riemannian Manifolds, unpublished (1997), available at: http://math.ucsd.edu/~lni/academic/isopara.pdf

    Google Scholar 

  46. R.S. Palais, C.L. Terng, Critical Point Theory and Submanifold Geometry. Lecture Notes in Mathematics, vol. 1353 (Springer, Berlin/New York, 1988)

    Google Scholar 

  47. P. Petersen, Riemannian Geometry. Graduate Texts in Mathematics, 171, 2nd edn. New York, NY, USA (Springer, 2006)

    Google Scholar 

  48. M. Radeschi, Low dimensional singular Riemannian foliations in spheres (2012, preprint). arXiv:1203.6113

    Google Scholar 

  49. M. Radeschi, Clifford algebras and new singular Riemannian foliations in spheres. Geom. Funct. Anal. 24, 1660–1682 (2014)

    Article  MathSciNet  Google Scholar 

  50. J. Szenthe, Orthogonally transversal submanifolds and the generalizations of the Weyl group. Periodica Mathematica Hungarica 15(4), 281–299 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  51. C.L. Terng, Isoparametric submanifolds and their Coxeter groups. J. Differ. Geom. 21, 79–107 (1985)

    MATH  MathSciNet  Google Scholar 

  52. C.L. Terng, G. Thorbergsson, Submanifold geometry in symmetric spaces. J. Differ. Geom. 42, 665–718 (1995)

    MATH  MathSciNet  Google Scholar 

  53. G. Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations, in Handbook of Differential Geometry, ed. by F. Dillen, L. Verstraelen, vol. 1 (Elsevier, Amsterdam/New York, 2000)

    Google Scholar 

  54. G. Thorbergsson, Transformation groups and submanifold geometry. Rendiconti di Matematica, Serie VII 25, 1–16 (2005)

    MATH  MathSciNet  Google Scholar 

  55. D. Töben, Parallel focal structure and singular Riemannian foliations. Trans. Am. Math. Soc. 358, 1677–1704 (2006)

    Article  MATH  Google Scholar 

  56. D. Töben, Singular Riemannian foliations on nonpositively curved manifolds. Math. Z. 255(2), 427–436 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  57. L. Verdiani, Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature. J. Differ. Geom. 68, 31–72 (2004)

    MATH  MathSciNet  Google Scholar 

  58. Q.M. Wang, Isoparametric hypersurfaces in complex projective spaces, in Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Beijing, 1980 (Science Press, Beijing, 1982), pp. 1509–1523

    Google Scholar 

  59. Q.M. Wang, Isoparametric functions on Riemannian manifolds. I. Math. Ann. 277, 639–646 (1987)

    Article  MATH  Google Scholar 

  60. S. Wiesendorf, Taut submanifolds and foliations. J. Diff. Geom. (to appear). arXiv:1112.5965

    Google Scholar 

  61. B. Wilking, A duality theorem for Riemannian foliations in nonnegative sectional curvature. Geom. Funct. Anal. 17(4), 1297–1320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alexandrino, M.M., Bettiol, R.G. (2015). Polar Foliations. In: Lie Groups and Geometric Aspects of Isometric Actions. Springer, Cham. https://doi.org/10.1007/978-3-319-16613-1_5

Download citation

Publish with us

Policies and ethics