Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 166))

Abstract

Spherical nucleic acids (SNAs) represent an emerging class of nanoparticle-based therapeutics. SNAs consist of densely functionalized and highly oriented oligonucleotides on the surface of a nanoparticle which can either be inorganic (such as gold or platinum) or hollow (such as liposomal or silica-based). The spherical architecture of the oligonucleotide shell confers unique advantages over traditional nucleic acid delivery methods, including entry into nearly all cells independent of transfection agents and resistance to nuclease degradation. Furthermore, SNAs can penetrate biological barriers, including the blood–brain and blood–tumor barriers as well as the epidermis, and have demonstrated efficacy in several murine disease models in the absence of significant adverse side effects. In this chapter, we will focus on the applications of SNAs in cancer therapy as well as discuss multimodal SNAs for drug delivery and imaging.

Stacey N. Barnaby and Timothy L. Sita contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6(9):1130–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Stegh AH (2013) Toward personalized cancer nanomedicine—past, present, and future. Integr Biol 5(1):48–65

    Article  CAS  Google Scholar 

  3. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Davidson BL, McCray PB (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12(5):329–340

    Article  CAS  PubMed  Google Scholar 

  5. Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12(11):967–977

    Article  CAS  PubMed  Google Scholar 

  6. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184

    Article  CAS  PubMed  Google Scholar 

  7. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293

    Article  CAS  PubMed  Google Scholar 

  9. Magen I, Hornstein E (2014) Oligonucleotide-based therapy for neurodegenerative diseases. Brain Res 1584:116–128

    Article  CAS  PubMed  Google Scholar 

  10. Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276(6):1494–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  12. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457(7228):426–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  CAS  PubMed  Google Scholar 

  14. Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431(7006):371–378

    Article  CAS  PubMed  Google Scholar 

  15. Novina CD, Sharp PA (2004) The RNAi revolution. Nature 430(6996):161–164

    Article  CAS  PubMed  Google Scholar 

  16. Hannon GJ (2002) RNA interference. Nature 418(6894):244–251

    Article  CAS  PubMed  Google Scholar 

  17. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3(10):737–747

    Article  CAS  PubMed  Google Scholar 

  18. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25–33

    Article  CAS  PubMed  Google Scholar 

  19. Bartlett DW, Davis ME (2007) Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnol Bioeng 97(4):909–921

    Article  CAS  PubMed  Google Scholar 

  20. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  21. Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG (2012) Action and reaction: the biological response to siRNA and Its delivery vehicles. Mol Ther 20(3):513–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Schroeder A, Levins CG, Cortez C, Langer R, Anderson DG (2010) Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 267(1):9–21

    Article  CAS  PubMed  Google Scholar 

  23. Whitehead KA, Langer R, Anderson DG (2010) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 9(5):412

    Article  CAS  Google Scholar 

  24. Fichter KM, Ingle NP, McLendon PM, Reineke TM (2013) Polymeric nucleic acid vehicles exploit active interorganelle trafficking mechanisms. ACS Nano 7(1):347–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nelson CE, Kintzing JR, Hanna A, Shannon JM, Gupta MK, Duvall CL (2013) Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo. ACS Nano 7(10):8870–8880

    Article  CAS  PubMed  Google Scholar 

  26. Patil ML, Zhang M, Taratula O, Garbuzenko OB, He H, Minko T (2009) Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. Biomacromolecules 10(2):258–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Alabi CA, Love KT, Sahay G, Yin H, Luly KM, Langer R, Anderson DG (2013) Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc Natl Acad Sci USA 110(32):12881–12886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rungta RL, Choi HB, Lin PJC, Ko RWY, Ashby D, Nair J, Manoharan M, Cullis PR, MacVicar BA (2013) Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain. Mol Ther Nucleic Acids 2:e136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Nayerossadat N, Maedeh T, Ali PA (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1(2):14

    Google Scholar 

  30. Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA 102(32):11539–11544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294

    Article  CAS  Google Scholar 

  32. Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H, Lehr C-M (2000) A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug Chem 11(6):926–932

    Article  CAS  PubMed  Google Scholar 

  33. Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134(3):1376–1391

    Article  CAS  PubMed  Google Scholar 

  34. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(15):607–609

    Article  CAS  PubMed  Google Scholar 

  35. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7(12):3818–3821

    Article  CAS  PubMed  Google Scholar 

  36. Choi CHJ, Hao L, Narayan SP, Auyeung E, Mirkin CA (2013) Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci USA 110(19):7625–7630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21(12):2250–2256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, Mirkin CA (2009) Regulating immune response using polyvalent nucleic acid—gold nanoparticle conjugates. Mol Biopharm 6(6):1934–1940

    Article  CAS  Google Scholar 

  39. Zheng D, Giljohann DA, Chen DL, Massich MD, Wang XQ, Iordanov H, Mirkin CA, Paller AS (2012) Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci USA 109(30):11975–11980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Barnaby SN, Lee A, Mirkin CA (2014) Probing the inherent stability of siRNA immobilized on nanoparticle constructs. Proc Natl Acad Sci USA 111(27):9739–9744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA—nanoparticle conjugates. J Am Chem Soc 131(6):2072–2073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776):1027–1030

    Article  CAS  PubMed  Google Scholar 

  43. Seferos DS, Prigodich AE, Giljohann DA, Patel PC, Mirkin CA (2009) Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett 9(1):308–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hao L, Patel PC, Alhasan AH, Giljohann DA, Mirkin CA (2011) Nucleic acid-gold nanoparticle conjugates as mimics of microRNA. Small 7(22):3158–3162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5(209):209ra152

    Google Scholar 

  46. Lee J-S, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle—oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7(7):2112–2115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA (2010) Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett 10(4):1477–1480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zhang C, Macfarlane RJ, Young KL, Choi CHJ, Hao L, Auyeung E, Liu G, Zhou X, Mirkin CA (2013) A general approach to DNA-programmable atom equivalents. Nat Mater 12(8):741–746

    Article  CAS  PubMed  Google Scholar 

  49. Mitchell GP, Mirkin CA, Letsinger RL (1999) Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc 121(35):8122–8123

    Article  CAS  Google Scholar 

  50. Young KL, Scott AW, Hao L, Mirkin SE, Liu G, Mirkin CA (2012) Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells. Nano Lett 12(7):3867–3871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Banga RJ, Chernyak N, Narayan SP, Nguyen ST, Mirkin CA (2014) Liposomal spherical nucleic acids. J Am Chem Soc 136(28):9866–9869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Calabrese CM, Merkel TJ, Briley WE, Randeria PS, Narayan SP, Rouge JL, Walker DA, Scott AW, Mirkin CA (2015) Biocompatible infinite-coordination-polymer-nanoparticle—nucleic-acid conjugates for antisense gene regulation Angew Chem Int Ed 54(2):476−480

    Google Scholar 

  53. Cutler JI, Zhang K, Zheng D, Auyeung E, Prigodich AE, Mirkin CA (2011) Polyvalent nucleic acid nanostructures. J Am Chem Soc 133(24):9254–9257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Morris W, Briley WE, Auyeung E, Cabezas MD, Mirkin CA (2014) Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J Am Chem Soc 136(20):7261–7264

    Article  CAS  PubMed  Google Scholar 

  55. Alemdaroglu FE, Alemdaroglu NC, Langguth P, Herrmann A (2008) DNA block copolymer micelles—a combinatorial tool for cancer nanotechnology. Adv Mater 20(5):899–902

    Article  CAS  Google Scholar 

  56. Li Z, Zhang Y, Fullhart P, Mirkin CA (2004) Reversible and chemically programmable micelle assembly with DNA block-copolymer amphiphiles. Nano Lett 4(6):1055–1058

    Article  CAS  Google Scholar 

  57. Rouge JL, Hao L, Wu XA, Briley WE, Mirkin CA (2014) Spherical nucleic acids as a divergent platform for synthesizing RNA-nanoparticle conjugates through enzymatic ligation. ACS Nano 8(9):8837–8843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kommareddy S, Amiji M (2007) Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J Pharm Sci 96(2):397–407

    Article  CAS  PubMed  Google Scholar 

  60. Zhang K, Hao L, Hurst SJ, Mirkin CA (2012) Antibody-linked spherical nucleic acids for cellular targeting. J Am Chem Soc 134(40):16488–16491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Nanba D, Toki F, Barrandon Y, Higashiyama S (2013) Recent advances in the epidermal growth factor receptor/ligand system biology on skin homeostasis and keratinocyte stem cell regulation. J Dermatol Sci 72(2):81–86

    Article  CAS  PubMed  Google Scholar 

  62. Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, Sabel M, Steinbach JP, Heese O, Reifenberger G, Weller M, Schackert G, Network ftGG (2007) Long-term survival with glioblastoma multiforme. Brain 130(10):2596–2606

    Article  PubMed  Google Scholar 

  63. Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Goti D, Hrzenjak A, Levak-Frank S, Frank S, Van Der Westhuyzen DR, Malle E, Sattler W (2001) Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J Neurochem 76(2):498–508

    Article  CAS  PubMed  Google Scholar 

  65. Mackic JB, Stins M, McComb JG, Calero M, Ghiso J, Kim KS, Yan SD, Stern D, Schmidt AM, Frangione B, Zlokovic BV (1998) Human blood-brain barrier receptors for Alzheimer’s amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 102(4):734–743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Stegh AH, Brennan C, Mahoney JA, Forloney KL, Jenq HT, Luciano JP, Protopopov A, Chin L, DePinho RA (2010) Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor. Genes Dev 24(19):2194–2204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Stegh AH, Chin L, Louis DN, DePinho RA (2008) What drives intense apoptosis resistance and propensity for necrosis in glioblastoma? A role for Bcl2L12 as a multifunctional cell death regulator. Cell Cycle 7(18):2833–2839

    Article  CAS  PubMed  Google Scholar 

  68. Stegh AH, DePinho RA (2011) Beyond effector caspase inhibition Bcl2L12 neutralizes p53 signaling in glioblastoma. Cell Cycle 10(1):33–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Stegh AH, Kesari S, Mahoney JE, Jenq HT, Forloney KL, Protopopov A, Louis DN, Chin L, DePinho RA (2008) Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proc Natl Acad Sci USA 105(31):10703–10708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Stegh AH, Kim H, Bachoo RM, Forloney KL, Zhang J, Schulze H, Park K, Hannon GJ, Yuan J, Louis DN, DePinho RA, Chin L (2007) Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. Genes Dev 21(1):98–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Boveri M, Berezowski V, Price A, Slupek S, Lenfant A-M, Benaud C, Hartung T, Cecchelli R, Prieto P, Dehouck M-P (2005) Induction of blood-brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line. Glia 51(3):187–198

    Article  PubMed  Google Scholar 

  72. Cecchelli R, Dehouck B, Descamps L, Fenart L, Buée-Scherrer V, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP (1999) In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliv Rev 36(2–3):165–178

    Article  CAS  PubMed  Google Scholar 

  73. Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, Dehouck M-P, Berezowski V, Fenart L, Cecchelli R (2008) An in vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro 22(3):799–811

    Article  CAS  PubMed  Google Scholar 

  74. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627

    Article  CAS  PubMed  Google Scholar 

  75. Huse JT, Holland EC (2009) Yin and yang: cancer-implicated miRNAs that have it both ways. Cell Cycle 8(22):3611–3612

    Article  CAS  PubMed  Google Scholar 

  76. Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27(34):5848–5856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Iorio MV, Croce CM (2012) Causes and Consequences of MicroRNA dysregulation. Cancer J 18(3):215–222 210.1097/PPO.1090b1013e318250c318001

    Google Scholar 

  78. Kouri FM, Hurley LA, Day ES, Hua Y, Merkel TJ, Queisser MA, Peng C-Y, Ritner C, Hao L, Daniel WL, Zhang H, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH (2015) miR-182 integrates apoptosis, growth and differentiation programs in glioblastoma Genes and Development, in press

    Google Scholar 

  79. Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Article  CAS  Google Scholar 

  80. Geusens B, Sanders N, Prow T, Van Gele M, Lambert J (2009) Cutaneous short-interfering RNA therapy. Expert Opin Drug Deliv 6(12):1333–1349

    Article  CAS  PubMed  Google Scholar 

  81. Leachman SA, Hickerson RP, Schwartz ME, Bullough EE, Hutcherson SL, Boucher KM, Hansen CD, Eliason MJ, Srivatsa GS, Kornbrust DJ, Smith FJD, McLean WHI, Milstone LM, Kaspar RL (2009) First-in-human mutation-targeted siRNA Phase Ib trial of an inherited skin disorder. Mol Ther 18(2):442–446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Proksch E, Brandner JM, Jensen J-M (2008) The skin: an indispensable barrier. Exp Dematol 17(12):1063–1072

    Article  Google Scholar 

  83. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310

    Article  CAS  PubMed  Google Scholar 

  84. Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl R, Bronson RT, Chen JW, Weissleder R, Housman DE, Charest A (2009) Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci USA 106(8):2712–2716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Dickens S, Van den Berge S, Hendrickx B, Verdonck K, Luttun A, Vranckx JJ (2010) Nonviral transfection strategies for keratinocytes, fibroblasts, and endothelial progenitor cells for ex vivo gene transfer to skin wounds. Tissue Eng Part C Methods 16(6):1601–1608

    Article  CAS  PubMed  Google Scholar 

  86. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin—DNA adducts. Chem Rev 99(9):2467–2498

    Article  CAS  PubMed  Google Scholar 

  87. Rosenberg B, Vancamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222(5191):385–386

    Article  CAS  PubMed  Google Scholar 

  88. Lorusso D, Petrelli F, Coinu A, Raspagliesi F, Barni S (2014) A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecol Oncol 133(1):117–123

    Article  CAS  PubMed  Google Scholar 

  89. Dhar S, Daniel WL, Giljohann DA, Mirkin CA, Lippard SJ (2009) Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads. J Am Chem Soc 131(41):14652–14653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320

    Article  CAS  PubMed  Google Scholar 

  91. Zhang X-Q, Xu X, Lam R, Giljohann D, Ho D, Mirkin CA (2011) Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA–nanoparticle conjugates. ACS Nano 5(9):6962–6970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Dubois J (2006) Recent progress in the development of docetaxel and paclitaxel analogues. Expert Opin Ther Pat 16(11):1481–1496

    Article  CAS  Google Scholar 

  93. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H (2007) Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 6(5):609–621

    Article  CAS  PubMed  Google Scholar 

  94. Panchagnula R (1998) Pharmaceutical aspects of paclitaxel. Int J Pharm 172(1–2):1–15

    Article  CAS  Google Scholar 

  95. Skwarczynski M, Hayashi Y, Kiso Y (2006) Paclitaxel prodrugs: toward smarter delivery of anticancer agents. J Med Chem 49(25):7253–7269

    Article  CAS  PubMed  Google Scholar 

  96. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Article  CAS  PubMed  Google Scholar 

  97. Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9(7):463–475

    Article  CAS  PubMed  Google Scholar 

  98. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354

    Article  CAS  PubMed  Google Scholar 

  99. Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D (2003) Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J Biol Chem 278(26):23343–23351

    Article  CAS  PubMed  Google Scholar 

  100. Song Y, Xu X, MacRenaris KW, Zhang X-Q, Mirkin CA, Meade TJ (2009) Multimodal gadolinium-enriched DNA–gold nanoparticle conjugates for cellular imaging. Angew Chem Int Ed 121(48):9307–9311

    Article  Google Scholar 

  101. Aime S, Cabella C, Colombatto S, Geninatti Crich S, Gianolio E, Maggioni F (2002) Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 16(4):394–406

    Article  PubMed  Google Scholar 

  102. Bloembergen N (1956) Spin relaxation processes in a two-proton system. Phys Rev 104(6):1542–1547

    Article  CAS  Google Scholar 

  103. Bloembergen N (1957) Proton relaxation times in paramagnetic solutions. Chem Phys 27(2):572–573

    CAS  Google Scholar 

  104. Bloembergen N, Morgan LO (1961) Proton relaxation times in paramagnetic solutions. effects of electron spin relaxation. Chem Phys 34(3):842–850

    CAS  Google Scholar 

  105. Solomon I (1955) Relaxation processes in a system of two Spins. Phys Rev 99(2):559–565

    Article  CAS  Google Scholar 

  106. Solomon I, Bloembergen N (1956) Nuclear magnetic interactions in the HF molecule. Chem Phys 25(2):261–266

    CAS  Google Scholar 

  107. Merbach AE, Toth E (eds) (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, New York

    Google Scholar 

  108. Zheng J, Zhu G, Li Y, Li C, You M, Chen T, Song E, Yang R, Tan W (2013) A spherical nucleic acid platform based on self-assembled DNA biopolymer for high-performance cancer therapy. ACS Nano 7(8):6545–6554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Girvan AC, Teng Y, Casson LK, Thomas SD, Juliger S, Ball MW, Klein JB, Pierce WM Jr, Barve SS, Bates PJ (2006) AGRO100 inhibits activation of nuclear factor-kappaB (NF-kappaB) by forming a complex with NF-kappaB essential modulator (NEMO) and nucleolin. Mol Cancer Ther 5(7):1790–1799

    Article  CAS  PubMed  Google Scholar 

  110. Hwang DW, Ko HY, Lee JH, Kang H, Ryu SH, Song IC, Lee DS, Kim S (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51(1):98–105

    Article  CAS  Google Scholar 

  111. Wang K, You M, Chen Y, Han D, Zhu Z, Huang J, Williams K, Yang CJ, Tan W (2011) Self-assembly of a bifunctional DNA carrier for drug delivery. Angew Chem Int Ed 50(27):6098–6101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander H. Stegh or Chad A. Mirkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barnaby, S.N., Sita, T.L., Petrosko, S.H., Stegh, A.H., Mirkin, C.A. (2015). Therapeutic Applications of Spherical Nucleic Acids. In: Mirkin, C., Meade, T., Petrosko, S., Stegh, A. (eds) Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16555-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16555-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16554-7

  • Online ISBN: 978-3-319-16555-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics