Skip to main content

Evaluation of Combined Genome Assemblies: A Case Study with Fungal Genomes

  • Conference paper
Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9044))

Included in the following conference series:

Abstract

The rapid advances in genome sequencing leads to the generation of huge amount of data in a single sequencing experiment. Several genome assemblers with different objectives were developed to process these genomic data. Obviously, the output assemblies produced by these assemblers have different qualities due to their diverse nature. Recent research efforts concluded that combining the assemblies from different assemblers would enhance the quality of the output assembly. Based on this, our study combines the five best assemblies of three fungal genomes and evaluates the quality of the output assembly as compared to that produced by individual assemblers. The results conclude that the output assembly quality is influenced by the increase of the number of gaps in the input assemblies more than the increase in N50 size. Based on this conclusion, we propose a set of guidelines to get better output assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mavromatis, K., Land, M.L., Brettin, T.S., Quest, D.J., Copeland, A., et al.: The Fast Changing Landscape of Sequencing Technologies and Their Impact on Microbial Genome Assemblies and Annotation. PLoS One 7(12), e48837 (2012)

    Google Scholar 

  2. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., Cheung, D.W., Yiu, S.M., Peng, S., Xiaoqian, Z., Liu, G., Liao, X., Li, Y., Yang, H., Wang, J., Lam, T.W., Wang, J.: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1(1), 18 (2012)

    Article  Google Scholar 

  3. Zerbino, D.R., Birney, E.: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008)

    Article  Google Scholar 

  4. Butler, J., MacCallum, L., Kleber, M., Shlyakhter, I.A., Belmonte, M.K., Lander, E.S., Nusbaum, C., Jaffe, D.B.: ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Research 18, 810–820 (2008)

    Article  Google Scholar 

  5. Simpson, J., Wong, K., Jackman, S., Schein, J., ABySS, A.: parallel assembler for short read sequence data. Genome, 1117–1123 (2009)

    Google Scholar 

  6. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms for Molecular Biology 8, 22 (2013)

    Article  Google Scholar 

  7. Peng, Y., Leung, H.C., Yiu, S.M., Chin, F.Y.: IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012)

    Article  Google Scholar 

  8. Ye, C., Ma, Z.S., Cannon, C.H., Pop, M., Yu, D.W.: Exploiting sparseness in de novo genome assembly. BMC Bioinformatics 13(suppl. 6), S1 (2012)

    Google Scholar 

  9. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A., Dvorkin, M., Kulikov, A., Lesin, V., Nikolenko, S., Pham, S., Prjibelski, A., Pyshkin, A., Sirotkin, A., Vyahhi, N., Tesler, G., Alekseyev, M., Pevzner, P.: SPAdes: A new genome assembler and its applications to single cell sequencing. Journal of Computational Biology 19(5), 455–477 (2012)

    Article  MathSciNet  Google Scholar 

  10. CLC bio, http://www.clcbio.com/

  11. Earl, D., Bradnam, K., St John, J., Darling, A., Lin, D., Fass, J., Yu, H.O., Buffalo, V., Zerbino, D.R., Diekhans, M., Nguyen, N., Ariyaratne, P.N., Sung, W.K., Ning, Z., Haimel, M., Simpson, J.T., Fonseca, N.A., Docking, T.R., Ho, I.Y., Rokhsar, D.S., Chikhi, R., Lavenier, D., Chapuis, G., Naquin, D., Maillet, N., Schatz, M.C., Kelley, D.R., Phillippy, A.M., Koren, S., et al.: Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Res. 21, 2224–2241 (2011)

    Article  Google Scholar 

  12. Bradnam, K.R., Fass, J.N., Alexandrov, A., Baranay, P., Bechner, M., Birol, I., Boisvert, S., Chapman, J.A., Chapuis, G., Chikhi, R., Chitsaz, H., Chou, W.C., Corbeil, J., Del Fabbro, C., Docking, T.R., Durbin, R., Earl, D., Emrich, S., Fedotov, P., Fonseca, N.A., Ganapathy, G., Gibbs, R.A., Gnerre, S., Godzaridis, E., Goldstein, S., Haimel, M., Hall, G., Haussler, D., Hiatt, J.B., Ho, I.Y., et al.: Assemblathon 2: Evaluating de novo methods of genome assembly in three vertebrate species. Gigascience 2, 10 (2013)

    Article  Google Scholar 

  13. Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen, T.J., Schatz, M.C., Delcher, A.L., Roberts, M.: GAGE: A critical evaluation of genome assemblies and assembly algorithms. Genome Res. 22(3), 557–567 (2012)

    Article  Google Scholar 

  14. Magoc, T., Pabinger, S., Canzar, S., Liu, X., Su, Q., Puiu, D., Tallon, L.J., Salzberg, S.L.: GAGE-B: An evaluation of genome assemblers for bacterial organisms. Bioinformatics 29(14), 1718–1725 (2013)

    Article  Google Scholar 

  15. Finotello, F., Lavezzo, E., Fontana, P., Peruzzo, D., Albiero, A., Barzon, L., Falda, M., Di Camillo, B., Toppo, S.: Comparative analysis of algorithms for whole-genome assembly of pyrosequencing data. Brief Bioinform 13(3), 269–280 (2011)

    Article  Google Scholar 

  16. Abbas, M.M., Malluhi, Q.M., Balakrishnan, P.: Assessment of de novo assemblers for draft genomes: A case study with fungal genomes. BMC Genomics 15(suppl. 9), S10 (2014)

    Google Scholar 

  17. Casagrande, A., Del, F.C., Scalabrin, S., Policriti, A.G.: Genomic Assemblies Combiner: A Graph Based Method to Integrate Different Assemblies. Bioinformatics and Biomedicine (2009), 10.1109/BIBM.2009.28

    Google Scholar 

  18. Sommer, D., Delcher, A., Salzberg, A., Pop, M.: Minimus: A fast, lightweight genome assembler. BMC Bioinformatics 8, 64 (2007)

    Article  Google Scholar 

  19. Nijkamp, J., Winterbach, W., van, D.B.M., Daran, J., Reinders, M., de Ridder, R.: Integrating genome assemblies with MAIA. Bioinformatics 26(18), i4339 (2010)

    Google Scholar 

  20. Zimin, A., Smith, D., Sutton, G., Yorke, J.: Assembly reconciliation. Bioinformatics 24, 42–45 (2008)

    Article  Google Scholar 

  21. Argueso, J., Carazzolle, M., Mieczkowski, P., Duarte, F., Netto, O., Missawa, S., Galzerani, F., Costa, G., Vidal, R., Noronha, M., Dominska, M., Andrietta, M., Andrietta, S., Cunha, A., Gomes, L., Tavares, F., Alcarde, A., Dietrich, F., McCusker, J., Petes, T., Pereira, G.: Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res. 19(12), 2258–2270 (2009)

    Article  Google Scholar 

  22. Vicedomini, R., Vezzi, F., Scalabrin, S., Arvestad, L., Policriti, A.G.-N.: GAM-NGS: genomic assemblies combiner for next generation sequencing. BMC Bioinformatics 14(7), 1–18 (2013)

    Google Scholar 

  23. Metassembler, http://sourceforge.net/apps/mediawiki/metassembler/index.php?title=Metassembler

  24. Soueidan, H., Maurier, F., Groppi, A., Sirand-Pugnet, P., Tardy, F., Citti, C., Dupuy, V., Nikolski, M.: Finishing bacterial genome assemblies with Mix. BMC Bioinformatics 14(suppl. 15), S16 (2013)

    Google Scholar 

  25. Yao, G., Ye, L., Gao, H., Minx, P., Warren, W., Weinstock, G.: Graph accordance of next-generation sequence assemblies. Bioinformatics 28, 13–16 (2011)

    Article  Google Scholar 

  26. Soto-Jimenez, L.M., Estrada, K., Sanchez-Flores, A.: GARM: Genome Assembly, Reconciliation and Combining Pipeline. Current Topics in Medicinal Chemistry 14(3), 418–424 (2014)

    Article  Google Scholar 

  27. Vezzi, F., Cattonaro, F., Policriti, A.: e-RGA: enhanced reference guided assembly of complex genomes. EMBnet J. 17, 46–54 (2011)

    Article  Google Scholar 

  28. Kurtz, A., Phillippy, A., Delcher, A., Smoot, M., Shumway, A., Antonescu, C., Salzberg, S.: Versatile and open software for comparing large genomes. Genome Biology 5(2), R12 (2004)

    Google Scholar 

  29. Blanco-Ulate, B., Allen, G., Powell, A.L., Cantu, D.: Draft genome sequence of Botrytis cinerea BcDW1, inoculum for noble rot of grape berries. Genome Announcements 1(3), e00252-13 (2013)

    Google Scholar 

  30. Blanco-Ulate, B., Rolshausen, P.E., Cantu, D.: Draft genome sequence of the grapevine dieback fungus Eutypa lata UCR-EL1. Genome Announcements 1(3), e00228-13 (2013)

    Google Scholar 

  31. Cantu, D., Segovia, V., Maclean, D., Bayles, R., Chen, X., Kamoun, S., Dubcovsky, J., Saunders, D.G., Uauy, C.: Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics 14, 270 (2013)

    Article  Google Scholar 

  32. Gregory, T.R., Nicol, J.A., Tamm, H., Kullman, B., Kullman, K., Leitch, I.J., Murray, B.G., Kapraun, D.F., Greilhuber, J., Bennett, M.D.: Eukaryotic genome size database. Nucleic Acids Res. 35, D332-D338 (2007)

    Google Scholar 

  33. Tsai, I., Otto, T., Berriman, M.: Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biol. 11(4), 41 (2010)

    Article  Google Scholar 

  34. Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G.: QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Abbas, M.M., Balakrishnan, P., Malluhi, Q.M. (2015). Evaluation of Combined Genome Assemblies: A Case Study with Fungal Genomes. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9044. Springer, Cham. https://doi.org/10.1007/978-3-319-16480-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16480-9_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16479-3

  • Online ISBN: 978-3-319-16480-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics