Skip to main content

Role of Progenitors in Pulmonary Fibrosis and Asthma

  • Chapter
Lung Stem Cells in the Epithelium and Vasculature

Abstract

Damage to the airway epithelium in a variety of pulmonary disorders, including asthma and idiopathic pulmonary fibrosis (IPF), leads to remodeling changes that impair lung function. Lung injury elicits the recruitment of stem cells and other progenitor cells and fibrocytes to the airways. These cells proliferate and differentiate into fibroblasts and myofibrolasts that secrete collagen and other extracellular matrix components that damage the normal airway architecture in a process termed airway remodeling. In IPF, the progressive scarring in the airways leads to irreversible pulmonary fibrosis. Stem cells are a potential source of pluripotent cells to regenerate lost cells in the airways and restore lung function. Stem cell niches in lung are specialized compartments where pluripotent stem cells reside in a defined stromal environment; stem cells mobilized from these sites may help restore lung structure after injury. Recent studies indicate that embryonic stem cells (ESCs) can be differentiated in vitro to lung lineage-specific cells to repair lung injury. Our understanding of the factors controlling stem cell migration to the lungs from the hematopoietic compartment, the development of stem cells locally in lung niches, and the transformation of stem cells to specific lung-lineage cell types is rapidly advancing. This information will be key for realizing how best to control the growth and differentiation of these progenitor cells ex vivo for therapeutic benefit in patients with progressive lung disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

αSMA:

Alpha smooth muscle actin

ABC:

ATP-binding cassette

ADSC:

Adipose stromal cell

AFSC:

Amniotic fluid stem cell

AQP-1:

Aquaporin 1

AQP-5:

Aquaporin 5

AT1:

Alveolar type 1

AT2:

Alveolar type 2

BADJ:

Bronchoalveolar duct junction

BAL:

Bronchoalveolar lavage

BASC:

Bronchioalveolar stem cell

BEGM:

Bronchial epithelial growth medium

BM-MSC:

Bone marrow-derived mesenchymal stem cell

BRDU:

Bromodeoxyuridine

CBP:

CREB-binding protein

CC-10:

Club cell-specific protein

CCL5:

Chemokine (C–C motif) ligand 5

CCL11:

Chemokine (C–C motif) ligand 11

CCL12:

Chemokine (C–C motif) ligand 12

CCL17:

Chemokine (C–C motif) ligand 17

CCL24:

Chemokine (C–C motif) ligand 24

CCR2:

Chemokine (C–C motif) receptor 2

CCSP:

Club cell-specific promoter

CD31:

Cluster of differentiation 31

CD34:

Cluster of differentiation 34

CD45:

Cluster of differentiation 45

CD147:

Cluster of differentiation 147

CD206:

Cluster of differentiation 206

CK5:

Cytokeratin 5

CysLT:

Cysteinyl leukotriene

CysLT1R:

Cysteinyl leukotriene 1 receptor

CXCR4:

Chemokine (C-X-C motif) receptor 4

CXCL1:

Chemokine (C-X-C motif) ligand 1

CXCL12:

Chemokine (C-X-C motif) ligand 12

DAB:

3,3′-Diaminobenzidine

ECFC:

Endothelial colony-forming cell

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMT:

Epithelial–mesenchymal transition

ERK:

Extracellular signal-regulated kinase

ESC:

Embryonic stem cell

Fgf10:

Fibroblast growth factor 10

FGF:

Fibroblast growth factor

hESC:

Human embryonic stem cell

HIF-1α:

Hypoxia-inducible factor 1 alpha

HIF-2α:

Hypoxia-inducible factor 2 alpha

ICAM:

Intracellular adhesion molecule 1

IL-4:

Interleukin 4

IL-5:

Interleukin 5

IL-6:

Interleukin 6

IL-12:

Interleukin 12

IL-13:

Interleukin 13

IL-33:

Interleukin 33

IFN-γ:

Interferon-γ

IPF:

Idiopathic pulmonary fibrosis

iPSC:

Induced pluripotent stem cell

JNK:

Jun amino-terminal kinase

KDR:

Vascular endothelial growth factor receptor2

KGF:

Keratinocyte growth factor

Klf-4:

Kruppel-like factor 4

LEF-1:

Lymphoid enhancer factor-1

LRC:

Label-retaining cell

MMP:

Matrix metalloproteinase

MMP-2:

Matrix metalloproteinase 2

MMP-3:

Matrix metalloproteinase 3

MMP-7:

Matrix metalloproteinase 7

MRC1:

Mannose receptor (cluster of differentiation 206)

MSC:

Mesenchymal stem cell

Nf-κB:

Nuclear factor kappa B

OVA:

Ovalbumin

PDGF:

Platelet-derived growth factor

SAGM:

Small airways growth medium

SDF-1:

Stromal-derived factor 1

SP:

Side population

SPC:

Surfactant protein C

SPD:

Surfactant protein D

ST2L:

Interleukin 33 receptor component

SVP:

Stromal vascular fraction

TCF:

T cell factor

TGF-β:

Transforming growth factor beta

Th1:

T-helper type 1

Th2:

T-helper type 2

Th17:

T-helper type 17

VEGF:

Vascular endothelial growth factor

VEGF-A:

Vascular endothelial growth factor A

WISP-1:

Wnt1-inducible-signaling pathway protein 1

References

  • Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166(12):7556–7562

    Article  CAS  PubMed  Google Scholar 

  • Aguilar S, Scotton CJ, McNulty K, Nye E, Stamp G, Laurent G, Bonnet D, Janes SM (2009) Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis. PLoS One 4(11):e8013. doi:10.1371/journal.pone.0008013

    Article  PubMed Central  PubMed  Google Scholar 

  • Ali NN, Edgar AJ, Samadikuchaksaraei A, Timson CM, Romanska HM, Polak JM, Bishop AE (2002) Derivation of type II alveolar epithelial cells from murine embryonic stem cells. Tissue Eng 8(4):541–550

    Article  CAS  PubMed  Google Scholar 

  • Alison MR, Poulsom R, Forbes S, Wright NA (2002) An introduction to stem cells. J Pathol 197(4):419–423

    Article  PubMed  Google Scholar 

  • Andersson-Sjöland A, de Alba CG, Nihlberg K, Becerril C, Ramírez R, Pardo A, Westergren-Thorsson G, Selman M (2008) Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 40(10):2129–2140. doi:10.1016/j.biocel.2008.02.012, Epub 2008 Mar 11

    Article  PubMed  Google Scholar 

  • Andersson-Sjöland A, Nihlberg K, Eriksson L, Bjermer L, Westergren-Thorsson G (2011) Fibrocytes and the tissue niche in lung repair. Respir Res 12:76. doi:10.1186/1465-9921-12-76

    Article  PubMed Central  PubMed  Google Scholar 

  • Antoniou KM, Papadaki HA, Soufla G, Kastrinaki MC, Damianaki A, Koutala H, Spandidos DA, Siafakas NM (2010) Investigation of bone marrow mesenchymal stem cells (BM MSCs) involvement in idiopathic pulmonary fibrosis (IPF). Respir Med 104(10):1535–1542. doi:10.1016/j.rmed.2010.04.015, Epub 2010 May 18

    Article  PubMed  Google Scholar 

  • Avouac J, Wipff J, Goldman O, Ruiz B, Couraud PO, Chiocchia G, Kahan A, Boileau C, Uzan G, Allanore Y (2008) Angiogenesis in systemic sclerosis impaired expression of vascular endothelial growth factor receptor 1 in endothelial progenitor-derived cells under hypoxic conditions. Arthritis Rheum 58(11):3550–3561. doi:10.1002/art.23968

    Article  CAS  PubMed  Google Scholar 

  • Bai TR, Vonk JM, Postma DS, Boezen HM (2007) Severe exacerbations predict excess lung function decline in asthma. Eur Respir J 30(3):452–456, Epub 2007 May 30

    Article  CAS  PubMed  Google Scholar 

  • Banerjee ER, Henderson WR Jr (2012a) Defining the molecular role of gp91phox in the immune manifestation of acute allergic asthma using a preclinical murine model. Clin Mol Allergy 10(1):2. doi:10.1186/1476-7961-10-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee ER, Henderson WR Jr (2012b) Characterization of lung stem cell niches in a mouse model of bleomycin-induced fibrosis. Stem Cell Res Ther 3(3):21. doi:10.1186/scrt112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee ER, Henderson WR Jr (2013) Role of T cells in a gp91 phox knockout murine model of acute allergic asthma. Allergy Asthma Clin Immunol 9(1):6. doi:10.1186/1710-1492-9-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee ER, Laflamme MA, Papayannopoulou T, Kahn M, Murry CE, Henderson WR Jr (2012) Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS One 7(3):e33165. doi:10.1371/journal.pone.0033165, Epub 2012 Mar 28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belperio JA, Dy M, Murray L, Burdick MD, Xue SRM, Keane MP (2004) The role of the Th2 CC chemokine ligand CCL17 in pulmonary fibrosis. J Immunol 173(7):4692–4698

    Article  CAS  PubMed  Google Scholar 

  • Bensadoun ES, Burke AK, Hogg JC, Roberts CR (1996) Proteoglycan deposition in pulmonary fibrosis. Am J Respir Crit Care Med 154(6 Pt 1):1819–1828

    Article  CAS  PubMed  Google Scholar 

  • Bianchetti L, Marini MA, Isgrò M, Bellini A, Schmidt M, Mattoli S (2012) IL-33 promotes the migration and proliferation of circulating fibrocytes from patients with allergen-exacerbated asthma. Biochem Biophys Res Commun 426(1):116–121. doi:10.1016/j.bbrc.2012.08.047, Epub 2012 Aug 17

    Article  CAS  PubMed  Google Scholar 

  • Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI (2010) Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol 299(6):L760–L770. doi:10.1152/ajplung.00182.2009, Epub 2010 Sep 3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH (2001) Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol 24(6):662–670

    Article  CAS  PubMed  Google Scholar 

  • Byrne AJ, Jones CP, Gowers K, Rankin SM, Lloyd CM (2013) Lung macrophages contribute to house dust mite driven airway remodeling via HIF-1α. PLoS One 8(7):e69246. doi:10.1371/journal.pone.0069246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceradini DJ, Gurtner GC (2005) Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 15(2):57–63

    Article  CAS  PubMed  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864, Epub 2004 Jul 4

    Article  CAS  PubMed  Google Scholar 

  • Chambers DC, Enever D, Ilic N, Sparks L, Whitelaw K, Ayres J, Yerkovich ST, Khalil D, Atkinson KM, Hopkins PM (2014) A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology. doi:10.1111/resp.12343, Epub ahead of print

    PubMed  Google Scholar 

  • Christie PE, Jonas M, Tsai CH, Chi EY, Henderson WR Jr (2004) Increase in laminin expression in allergic airway remodelling and decrease by dexamethasone. Eur Respir J 24(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Chua F, Gauldie J, Laurent GJ (2005) Pulmonary fibrosis, searching for model answers. Am J Respir Cell Mol Biol 33(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Covar RA, Spahn JD, Murphy JR, Szefler SJ, Childhood Asthma Management Program Research Group (2004) Progression of asthma measured by lung function in the childhood asthma management program. Am J Respir Crit Care Med 170(3):234–241, Epub 2004 Mar 17

    Article  PubMed  Google Scholar 

  • Daly HE, Baecher-Allan CM, Barth RK, D’Angio CT, Finkelstein JN (1997) Bleomycin induces strain-dependent alterations in the pattern of epithelial cell-specific marker expression in mouse lung. Toxicol Appl Pharmacol 142(2):303–310

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Zhou Y, Xian L, Li C, Xu T, Plunkett B, Huang SK, Wan M, Cao X (2014) Functional effects of TGF-β1 on mesenchymal stem cell mobilization in cockroach allergen-induced asthma. J Immunol 192(10):4560–4570. doi:10.4049/jimmunol.1303461, Epub 2014 Apr 7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia O, Carraro G, Turcatel G, Hall M, Sedrakyan S, Roche T, Buckley S, Driscoll B, Perin L, Warburton D (2013) Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage. PLoS One 8(8):e71679. doi:10.1371/journal.pone.0071679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161(1):173–182, Epub 2003 Aug 8

    Article  PubMed Central  PubMed  Google Scholar 

  • Giangreco A, Shen H, Reynolds SD, Stripp BR (2004) Molecular phenotype of airway side population cells. Am J Physiol Lung Cell Mol Physiol 286(4):L624–L630

    Article  CAS  PubMed  Google Scholar 

  • Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, Burdick MD, Strieter RM (2006) Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J Immunol 176(3):1916–1927

    Article  CAS  PubMed  Google Scholar 

  • Guilbert TW, Morgan WJ, Zeiger RS, Mauger DT, Boehmer SJ, Szefler SJ, Bacharier LB, Lemanske RF Jr, Strunk RC, Allen DB, Bloomberg GR, Heldt G, Krawiec M, Larsen G, Liu AH, Chinchilli VM, Sorkness CA, Taussig LM, Martinez FD (2006) Long-term inhaled corticosteroids in preschool children at high risk for asthma. N Engl J Med 354(19):1985–1997

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Tanaka H, Abe S (2005) Quantitative analysis of bronchial wall vascularity in the medium and small airways of patients with asthma and COPD. Chest 127(3):965–972

    Article  PubMed  Google Scholar 

  • Henderson WR Jr, Tang LO, Chu SJ, Tsao SM, Chiang GK, Jones F, Jonas M, Pae C, Wang H, Chi EY (2002) A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med 165(1):108–116

    Article  PubMed  Google Scholar 

  • Henderson WR Jr, Chiang GK, Tien YT, Chi EY (2006) Reversal of allergen-induced airway remodeling by CysLT1 receptor blockade. Am J Respir Crit Care Med 173(7):718–728, Epub 2005 Dec 30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA, Kahn M (2010) Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. (2010). Proc Natl Acad Sci U S A 107(32):14309–14314. doi:10.1073/pnas.1001520107, Epub 2010 Jul 21

    Article  PubMed Central  PubMed  Google Scholar 

  • Holgate ST, Peters-Golden M, Panettieri RA, Henderson WR Jr (2003) Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling. J Allergy Clin Immunol 111(1 Suppl):S18–S34; discussion S34-6

    Article  CAS  PubMed  Google Scholar 

  • Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Club cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24(6):671–681

    Article  CAS  PubMed  Google Scholar 

  • Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004) Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 164(2):577–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Olivenstein R, Taha R, Hamid Q, Ludwig M (1999) Enhanced proteoglycan deposition in the airway wall of atopic asthmatics. Am J Respir Crit Care Med 160(2):725–729

    Article  CAS  PubMed  Google Scholar 

  • Isgrò M, Bianchetti L, Marini MA, Bellini A, Schmidt M, Mattoli S (2013) The C-C motif chemokine ligands CCL5, CCL11, and CCL24 induce the migration of circulating fibrocytes from patients with severe asthma. Mucosal Immunol 6(4):718–727. doi:10.1038/mi.2012.109, Epub 2012 Nov 14

    Article  PubMed  Google Scholar 

  • Kapoor S, Patel SA, Kartan S, Axelrod D, Capitle E, Rameshwar P (2012) Tolerance-like mediated suppression by mesenchymal stem cells in patients with dust mite allergy-induced asthma. J Allergy Clin Immunol 129(4):1094–1101. doi:10.1016/j.jaci.2011.10.048, Epub 2011 Dec 22

    Article  CAS  PubMed  Google Scholar 

  • Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835

    Article  CAS  PubMed  Google Scholar 

  • King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L, Lederer DJ, Nathan SD, Pereira CA, Sahn SA, Sussman R, Swigris JJ, Noble PW, ASCEND Study Group (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370(22):2083–2092. doi:10.1056/NEJMoa1402582, Epub 2014 May 18

    Article  PubMed  Google Scholar 

  • Kørbling M, Estrov Z (2003) Adult stem cells for tissue repair—a new therapeutic concept? N Engl J Med 349(6):570–582

    Article  PubMed  Google Scholar 

  • Larsen K, Macleod D, Nihlberg K, Gürcan E, Bjermer L, Marko-Varga G, Westergren-Thorsson G (2006) Specific haptoglobin expression in bronchoalveolar lavage during differentiation of circulating fibroblast progenitor cells in mild asthma. J Proteome Res 5(6):1479–1483

    Article  CAS  PubMed  Google Scholar 

  • Lathrop MJ, Brooks EM, Bonenfant NR, Sokocevic D, Borg ZD, Goodwin M, Loi R, Cruz F, Dunaway CW, Steele C, Weiss DJ (2014) Mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway. Stem Cells Transl Med 3(2):194–205. doi:10.5966/sctm.2013-0061, Epub 2014 Jan 16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lazaar AL, Panettieri RA Jr (2003) Is airway remodeling clinically relevant in asthma? Am J Med 115(8):652–659

    Article  PubMed  Google Scholar 

  • Lee SY, Kwon S, Kim KH, Moon HS, Song JS, Park SH, Kim YK (2006) Expression of vascular endothelial growth factor and hypoxia-inducible factor in the airway of asthmatic patients. Ann Allergy Asthma Immunol 97(6):794–799

    Article  CAS  PubMed  Google Scholar 

  • Londhe VA, Maisonet TM, Lopez B, Jeng JM, Li C, Minoo P (2011) A subset of epithelial cells with CCSP promoter activity participates in alveolar development. Am J Respir Cell Mol Biol 44(6):804–812. doi:10.1165/rcmb.2009-0429OC, Epub 2010 Aug 6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch TJ, Engelhardt JF (2014) Progenitor cells in proximal airway epithelial development and regeneration. J Cell Biochem 115(10):1637–1645. doi:10.1002/jcb.24834, Epub ahead of print

    Article  CAS  PubMed  Google Scholar 

  • Malli F, Koutsokera A, Paraskeva E, Zakynthinos E, Papagianni M, Makris D, Tsilioni I, Molyvdas PA, Gourgoulianis KI, Daniil Z (2013) Endothelial progenitor cells in the pathogenesis of idiopathic pulmonary fibrosis: an evolving concept. PLoS One 8(1):e53658. doi:10.1371/journal.pone.0053658, Epub 2013 Jan 14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mariñas-Pardo L, Mirones I, Amor-Carro O, Fraga-Iriso R, Lema-Costa B, Cubillo I, Rodríguez Milla MA, García-Castro J, Ramos-Barbón D (2014) Mesenchymal stem cells regulate airway contractile tissue remodeling in murine experimental asthma. Allergy 69(6):730–740. doi:10.1111/all.12392, Epub 2014 Apr 21

    Article  PubMed Central  PubMed  Google Scholar 

  • McElroy MC, Kasper M (2004) The use of alveolar epithelial type I cell-selective markers to investigate lung injury and repair. Eur Respir J 24(4):664–673

    Article  CAS  PubMed  Google Scholar 

  • Mehrad B, Keane MP, Gomperts BN, Strieter RM (2007) Circulating progenitor cells in chronic lung disease. Expert Rev Respir Med 1(1):157–165. doi:10.1586/17476348.1.1.157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehrotra AK, Henderson WR Jr (2009) The role of leukotrienes in airway remodeling. Curr Mol Med 9(3):383–391

    Article  PubMed  Google Scholar 

  • Miki T, Yasuda SY, Kahn M (2011) Wnt/β-catenin signaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev 7(4):836–846. doi:10.1007/s12015-011-9275-1

    Article  CAS  PubMed  Google Scholar 

  • Moeller A, Gilpin SE, Ask K, Cox G, Cook D, Gauldie J, Margetts PJ, Farkas L, Dobranowski J, Boylan C, O’Byrne PM, Strieter RM, Kolb M (2009) Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179(7):588–594. doi:10.1164/rccm.200810-1534OC, Epub 2009 Jan 16

    Article  PubMed  Google Scholar 

  • Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG, Hodges MG, Jelinek I, Madala S, Karpati S, Mezey E (2010) Bone marrow stromal cells use TGF-β to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci U S A 107(12):5652–5657. doi:10.1073/pnas.0910720107, Epub 2010 Mar 15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nihlberg K, Larsen K, Hultgardh-Nilsson A, Malmstrom A, Bjermer L, Westergren-Thorsson G (2006) Tissue fibrocytes in patients with mild asthma: a possible link to thickness of reticular basement membrane? Respir Res 7:50

    Article  PubMed Central  PubMed  Google Scholar 

  • Nihlberg K, Andersson-Sjoland A, Tufvesson E, Erjefalt JS, Bjermer L, Westergren-Thorsson G (2010) Altered matrix production in the distal airways of individuals with asthma. Thorax 65(8):670–676. doi:10.1136/thx.2009.129320

    Article  PubMed  Google Scholar 

  • Ogulur I, Gurhan G, Aksoy A, Duruksu G, Inci C, Filinte D, Kombak FE, Karaoz E, Akkoc T (2014) Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma. Int Immunopharmacol 20(1):101–109. doi:10.1016/j.intimp.2014.02.028, Epub 2014 Mar 6

    Article  CAS  PubMed  Google Scholar 

  • Olmedo O, Goldstein IF, Acosta L, Divjan A, Rundle AG, Chew GL, Mellins RB, Hoepner L, Andrews H, Lopez-Pintado S, Quinn JW, Perera FP, Miller RL, Jacobson JS, Perzanowski MS (2011) Neighborhood differences in exposure and sensitization to cockroach, mouse, dust mite, cat, and dog allergens in New York City. J Allergy Clin Immunol 128(2):284–292.e7. doi:10.1016/j.jaci.2011.02.044, Epub 2011 May 4

    Article  PubMed Central  PubMed  Google Scholar 

  • Payne DN, Rogers AV, Adelroth E, Bandi V, Guntupalli KK, Bush A, Jeffery PK (2003) Early thickening of the reticular basement membrane in children with difficult asthma. Am J Respir Crit Care Med 167(1):78–82

    Article  PubMed  Google Scholar 

  • Reilkoff RA, Bucala R, Herzog EL (2011) Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol 11(6):427–435. doi:10.1038/nri2990, Epub 2011 May 20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, Cottin V, Flaherty KR, Hansell DM, Inoue Y, Kim DS, Kolb M, Nicholson AG, Noble PW, Selman M, Taniguchi H, Brun M, Le Maulf F, Girard M, Stowasser S, Schlenker-Herceg R, Disse B, Collard HR, Trial Investigators INPULSIS (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370(22):2071–2082. doi:10.1056/NEJMoa1402584

    Article  PubMed  Google Scholar 

  • Rippon HJ, Ali NN, Polak JM, Bishop AE (2004) Initial observations on the effect of medium composition on the differentiation of murine embryonic stem cells to alveolar type II cells. Cloning Stem Cells 6(2):49–56

    Article  CAS  PubMed  Google Scholar 

  • Salvato G (2001) Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and non-asthmatic subjects. Thorax 56(12):902–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samadikuchaksaraei A, Cohen S, Isaac K, Rippon HJ, Polak JM, Bielby RC, Bishop AE (2006) Derivation of distal airway epithelium from human embryonic stem cells. Tissue Eng 12(4):867–875

    Article  CAS  PubMed  Google Scholar 

  • Saunders R, Sutcliffe A, Kaur D, Siddiqui S, Hollins F, Wardlaw A, Bradding P, Brightling C (2009) Airway smooth muscle chemokine receptor expression and function in asthma. Clin Exp Allergy 39(11):1684–1692. doi:10.1111/j.1365-2222.2009.03310.x, Epub 2009 Sep 7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S (2003) Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171(1):380–389

    Article  CAS  PubMed  Google Scholar 

  • Smadja DM, Mauge L, Nunes H, d’Audigier C, Juvin K, Borie R, Carton Z, Bertil S, Blanchard A, Crestani B, Valeyre D, Gaussem P, Israel-Biet D (2013) Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis 16(1):147–157. doi:10.1007/s10456-012-9306-9, Epub 2012 Sep 16

    Article  CAS  PubMed  Google Scholar 

  • Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    Article  CAS  PubMed  Google Scholar 

  • Song C, Yuan Y, Wang XM, Li D, Zhang GM, Huang B, Feng ZH (2014) Passive transfer of tumour-derived MDSCs inhibits asthma-related airway inflammation. Scand J Immunol 79(2):98–104. doi:10.1111/sji.12140

    Article  CAS  PubMed  Google Scholar 

  • Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414(6859):98–104

    Article  CAS  PubMed  Google Scholar 

  • Summer R, Kotton DN, Sun X, Ma B, Fitzsimmons K, Fine A (2003) Side population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol 285(1):L97–L104, Epub 2003 Mar 7

    Article  CAS  PubMed  Google Scholar 

  • Summer R, Kotton DN, Sun X, Fitzsimmons K, Fine A (2004) Translational physiology: origin and phenotype of lung side population cells. Am J Physiol Lung Cell Mol Physiol 287(3):L477–L483, Epub 2004 Mar 26

    Article  CAS  PubMed  Google Scholar 

  • Teo JL, Kahn M (2010) The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Adv Drug Deliv Rev 62(12):1149–1155. doi:10.1016/j.addr.2010.09.012, Epub 2010 Oct 21

    Article  CAS  PubMed  Google Scholar 

  • The Childhood Asthma Management Program Research Group (2000) Long-term effects of budesonide or nedocromil in children with asthma. N Engl J Med 343(15):1054–1063

    Article  Google Scholar 

  • Tsai YM, Hsu SC, Zhang J, Zhou YF, Plunkett B, Huang SK, Gao PS (2013) Functional interaction of cockroach allergens and mannose receptor (CD206) in human circulating fibrocytes. PLoS One 8(5):e64105. doi:10.1371/journal.pone.0064105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tzouvelekis A, Paspaliaris V, Koliakos G, Ntolios P, Bouros E, Oikonomou A, Zissimopoulos A, Boussios N, Dardzinski B, Gritzalis D, Antoniadis A, Froudarakis M, Kolios G, Bouros D (2013) A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. J Transl Med 11:171. doi:10.1186/1479-5876-11-171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volckaert T, De Langhe S (2014) Lung epithelial stem cells and their niches: Fgf10 takes center stage. Fibrogen Tiss Rep 7:8. doi:10.1186/1755-1536-7-8

    Article  Google Scholar 

  • Volckaert T, Dill E, Campbell A, Tiozzo C, Majka S, Bellusci S, De Langhe SP (2011) Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest 121(11):4409–4419. doi:10.1172/JCI58097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volckaert T, Campbell A, De Langhe S (2013) c-Myc regulates proliferation and Fgf10 expression in airway smooth muscle after airway epithelial injury in mouse. PLoS One 8:e71426. doi:10.1371/journal.pone.0071426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walker N, Badri L, Wettlaufer S, Flint A, Sajjan U, Krebsbach PH, Keshamouni VG, Peters-Golden M, Lama VN (2011) Resident tissue-specific specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. Am J Pathol 178(6):2461–2469. doi:10.1016/j.ajpath.2011.01.058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang D, Haviland D, Burns A, Zsigmond E, Wetsel R (2007) A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 104(11):4449–4454, Epub 2007 Mar 2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang CH, Huang CD, Lin HC, Lee KY, Lin SM, Liu CY, Huang KH, Ko YS, Chung KF, Kuo HP (2008) Increased circulating fibrocytes in asthma with chronic airflow obstruction. Am J Respir Crit Care Med 178(6):583–591. doi:10.1164/rccm.200710-1557OC, Epub 2008 Jun 26

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Chiou GY, Chien Y, Wu CC, Wu TC, Lo WT, Chen SJ, Chiou SH, Peng HJ, Huang CF (2013) Induced pluripotent stem cells without c-Myc reduce airway responsiveness and allergic reaction in sensitized mice. Transplantation 96(11):958–965. doi:10.1097/TP.0b013e3182a53ef7

    Article  CAS  PubMed  Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    Article  CAS  PubMed  Google Scholar 

  • Xi Y, Tan K, Brumwell AN, Chen SC, Kim YH, Kim TJ, Wei Y, Chapman HA (2014) Inhibition of epithelial-to-mesenchymal transition and pulmonary fibrosis by methacycline. Am J Respir Cell Mol Biol 50(1):51–60. doi:10.1165/rcmb.2013-0099OC

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmerman ZF, Moon RT, Chien AJ (2012) Targeting Wnt pathways in disease. Cold Spring Harb Perspect Biol 4(11):a008086. doi:10.1101/cshperspect.a008086

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ena Ray Banerjee Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ray Banerjee, E., Henderson, W.R. (2015). Role of Progenitors in Pulmonary Fibrosis and Asthma. In: Firth, A., Yuan, JJ. (eds) Lung Stem Cells in the Epithelium and Vasculature. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-16232-4_5

Download citation

Publish with us

Policies and ethics