Skip to main content

Vascular Repair and Regeneration by Endothelial Progenitor Cells

  • Chapter
Lung Stem Cells in the Epithelium and Vasculature

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 843 Accesses

Abstract

Pulmonary arterial endothelial cells perform a plethora of functions including forming an antithrombotic surface and regulating blood flow by the release of paracrine factors that can constrict or dilate the vasculature to allow a matching between ventilation and perfusion. Moreover, inflammatory processes in the lung depend on leukocytes migrating through the endothelial monolayer. Disruption of the endothelial barrier function leads to edema formation in acute lung injury (ALI), and persistent endothelial dysfunction also plays an important role in the onset of pulmonary arterial hypertension (PAH).

Endothelial cells have some capacity for repair, but this is not always sufficient. Therefore, regenerative endothelial progenitor cells (EPCs) have attracted considerable attention as a way to enhance endothelial regeneration. The ability of EPCs to mediate neovascularization and repair vessels after injury has been demonstrated in animal models of myocardial infarction, hind limb ischemia, and wound healing. Recent findings also indicate that EPCs could be involved in pulmonary vascular repair and in this chapter, we will discuss the experiments that have been performed to establish the importance and therapeutic potential of EPCs in bronchopulmonary dysplasia, PAH, ALI, and chronic obstructive pulmonary disease (COPD). Besides their therapeutic relevance, studying EPC numbers and functionality may also provide insights into the underlying disease pathology and serve as prognostic markers for disease outcomes.

After a summary of how EPCs were discovered and how they might be used for vascular repair, we will discuss results from experimental and clinical studies of pulmonary disease and also indicate the areas that deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALI:

Acute lung injury

BMPR2:

Bone morphogenetic protein receptor 2

BPD:

Bronchopulmonary dysplasia

Cdc42:

Cell division control protein 42 homolog

COPD:

Chronic obstructive pulmonary disease

CXCR4:

C-X-C Chemokine receptor type 4

ECFCs:

Endothelial colony-forming cells

eNOS:

Endothelial nitric oxide synthase

EPC:

Endothelial progenitor cell

FoxM1:

Forkhead box protein M1

HGF:

Hepatocyte growth factor

IGF1:

Insulin-like growth factor 1

IL10:

Interleukin 10

IPAH:

Idiopathic pulmonary arterial hypertension

LPS:

Lipopolysaccharide

MCP1:

Monocyte chemoattractant protein-1

MSC:

Mesenchymal stem cell

NYHA:

New York Heart Association

PAEC:

Pulmonary artery endothelial cell

PAH:

Pulmonary arterial hypertension

PDE5:

Phosphodiesterase 5

Rac1:

Ras-related C3 botulinum toxin substrate 1

SDF1:

Stromal cell-derived factor 1

VEGF:

Vascular endothelial growth factor

VEGFR-2:

Vascular endothelial growth factor receptor 2

References

  • Abbas MM, Evans JJ, Sin IL, Gooneratne A, Hill A, Benny PS (2003) Vascular endothelial growth factor and leptin: regulation in human cumulus cells and in follicles. Acta Obstet Gynecol Scand 82(11):997–1003

    Article  PubMed  Google Scholar 

  • Alvarez DF, Huang L, King JA, ElZarrad MK, Yoder MC, Stevens T (2008) Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 294(3):L419–L430. doi:10.1152/ajplung.00314.2007

    Article  CAS  PubMed  Google Scholar 

  • Andersen KH, Iversen M, Kjaergaard J, Mortensen J, Nielsen-Kudsk JE, Bendstrup E, Videbaek R, Carlsen J (2012) Prevalence, predictors, and survival in pulmonary hypertension related to end-stage chronic obstructive pulmonary disease. J Heart Lung Transplant 31(4):373–380. doi:10.1016/j.healun.2011.11.020

    Article  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  • Asosingh K, Aldred MA, Vasanji A, Drazba J, Sharp J, Farver C, Comhair SA, Xu W, Licina L, Huang L, Anand-Apte B, Yoder MC, Tuder RM, Erzurum SC (2008) Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol 172(3):615–627. doi:10.2353/ajpath.2008.070705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM, Fukumura D, Scadden DT, Jain RK (2008) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111(3):1302–1305. doi:10.1182/blood-2007-06-094318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker CD, Balasubramaniam V, Mourani PM, Sontag MK, Black CP, Ryan SL, Abman SH (2012) Cord blood angiogenic progenitor cells are decreased in bronchopulmonary dysplasia. Eur Respir J 40(6):1516–1522. doi:10.1183/09031936.00017312

    Article  PubMed  Google Scholar 

  • Baker CD, Seedorf GJ, Wisniewski BL, Black CP, Ryan SL, Balasubramaniam V, Abman SH (2013) Endothelial colony-forming cell conditioned media promote angiogenesis in vitro and prevent pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 305(1):L73–L81. doi:10.1152/ajplung.00400.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH (2007) Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292(5):L1073–L1084. doi:10.1152/ajplung.00347.2006

    Article  CAS  PubMed  Google Scholar 

  • Barbera JA, Peinado VI, Santos S, Ramirez J, Roca J, Rodriguez-Roisin R (2001) Reduced expression of endothelial nitric oxide synthase in pulmonary arteries of smokers. Am J Respir Crit Care Med 164(4):709–713. doi:10.1164/ajrccm.164.4.2101023

    Article  CAS  PubMed  Google Scholar 

  • Borghesi A, Massa M, Campanelli R, Bollani L, Tzialla C, Figar TA, Ferrari G, Bonetti E, Chiesa G, de Silvestri A, Spinillo A, Rosti V, Stronati M (2009) Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med 180(6):540–546. doi:10.1164/rccm.200812-1949OC

    Article  PubMed  Google Scholar 

  • Burnham EL, Taylor WR, Quyyumi AA, Rojas M, Brigham KL, Moss M (2005) Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J Respir Crit Care Med 172(7):854–860. doi:10.1164/rccm.200410-1325OC

    Article  PubMed  Google Scholar 

  • Cella G, Bellotto F, Tona F, Sbarai A, Mazzaro G, Motta G, Fareed J (2001) Plasma markers of endothelial dysfunction in pulmonary hypertension. Chest 120(4):1226–1230

    Article  CAS  PubMed  Google Scholar 

  • Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF (2000) Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87(9):728–730

    Article  CAS  PubMed  Google Scholar 

  • Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31(1):27–33. doi:10.1161/ATVBAHA.110.218123

    Article  CAS  PubMed  Google Scholar 

  • Diller GP, van Eijl S, Okonko DO, Howard LS, Ali O, Thum T, Wort SJ, Bedard E, Gibbs JS, Bauersachs J, Hobbs AJ, Wilkins MR, Gatzoulis MA, Wharton J (2008) Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation 117(23):3020–3030. doi:10.1161/CIRCULATIONAHA.108.769646

    Article  CAS  PubMed  Google Scholar 

  • Fadini GP, Schiavon M, Cantini M, Baesso I, Facco M, Miorin M, Tassinato M, de Kreutzenberg SV, Avogaro A, Agostini C (2006) Circulating progenitor cells are reduced in patients with severe lung disease. Stem Cells 24(7):1806–1813. doi:10.1634/stemcells.2005-0440

    Article  PubMed  Google Scholar 

  • Foteinos G, Hu Y, Xiao Q, Metzler B, Xu Q (2008) Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation 117(14):1856–1863. doi:10.1161/CIRCULATIONAHA.107.746008

    Article  PubMed  Google Scholar 

  • Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, Stenmark KR (2006) Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 168(2):659–669. doi:10.2353/ajpath.2006.050599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gambaryan N, Perros F, Montani D, Cohen-Kaminsky S, Mazmanian M, Renaud JF, Simonneau G, Lombet A, Humbert M (2011) Targeting of c-kit + haematopoietic progenitor cells prevents hypoxic pulmonary hypertension. Eur Respir J 37(6):1392–1399. doi:10.1183/09031936.00045710

    Article  CAS  PubMed  Google Scholar 

  • Hansmann G, Plouffe BD, Hatch A, von Gise A, Sallmon H, Zamanian RT, Murthy SK (2011) Design and validation of an endothelial progenitor cell capture chip and its application in patients with pulmonary arterial hypertension. J Mol Med (Berl) 89(10):971–983. doi:10.1007/s00109-011-0779-6

    Article  Google Scholar 

  • Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600. doi:10.1056/NEJMoa022287

    Article  PubMed  Google Scholar 

  • Ishizawa K, Kubo H, Yamada M, Kobayashi S, Suzuki T, Mizuno S, Nakamura T, Sasaki H (2004) Hepatocyte growth factor induces angiogenesis in injured lungs through mobilizing endothelial progenitor cells. Biochem Biophys Res Commun 324(1):276–280. doi:10.1016/j.bbrc.2004.09.049

    Article  CAS  PubMed  Google Scholar 

  • Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, Abman SH (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279(3):L600–L607

    CAS  PubMed  Google Scholar 

  • Junhui Z, Xingxiang W, Guosheng F, Yunpeng S, Furong Z, Junzhu C (2008) Reduced number and activity of circulating endothelial progenitor cells in patients with idiopathic pulmonary arterial hypertension. Respir Med 102(7):1073–1079. doi:10.1016/j.rmed.2007.12.030

    Article  PubMed  Google Scholar 

  • Lagaaij EL, Cramer-Knijnenburg GF, van Kemenade FJ, van Es LA, Bruijn JA, van Krieken JH (2001) Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet 357(9249):33–37. doi:10.1016/S0140-6736(00)03569-8

    Article  CAS  PubMed  Google Scholar 

  • Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM (1998) Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 101(5):927–934. doi:10.1172/JCI1910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mao M, Wang SN, Lv XJ, Wang Y, Xu JC (2010) Intravenous delivery of bone marrow-derived endothelial progenitor cells improves survival and attenuates lipopolysaccharide-induced lung injury in rats. Shock 34(2):196–204. doi:10.1097/SHK.0b013e3181d49457

    Article  PubMed  Google Scholar 

  • Marsboom G, Pokreisz P, Gheysens O, Vermeersch P, Gillijns H, Pellens M, Liu X, Collen D, Janssens S (2008) Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells 26(4):1017–1026. doi:10.1634/stemcells.2007-0562

    Article  PubMed  Google Scholar 

  • Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, Thenappan T, Bache-Wiig P, Piao L, Paul J, Chen CT, Archer SL (2012) Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med 185(6):670–679. doi:10.1164/rccm.201108-1562OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagaya N, Kangawa K, Kanda M, Uematsu M, Horio T, Fukuyama N, Hino J, Harada-Shiba M, Okumura H, Tabata Y, Mochizuki N, Chiba Y, Nishioka K, Miyatake K, Asahara T, Hara H, Mori H (2003) Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation 108(7):889–895. doi:10.1161/01.CIR.0000079161.56080.22

    Article  CAS  PubMed  Google Scholar 

  • Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masumura T, Sokabe T, Asahara T, Ando J (2009) Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol (1985) 106(1):203–211. doi:10.1152/japplphysiol.00197.2008

    Article  CAS  Google Scholar 

  • Paviotti G, Fadini GP, Boscaro E, Agostini C, Avogaro A, Chiandetti L, Baraldi E, Filippone M (2011) Endothelial progenitor cells, bronchopulmonary dysplasia and other short-term outcomes of extremely preterm birth. Early Hum Dev 87(7):461–465. doi:10.1016/j.earlhumdev.2011.03.011

    Article  PubMed  Google Scholar 

  • Peinado VI, Barbera JA, Ramirez J, Gomez FP, Roca J, Jover L, Gimferrer JM, Rodriguez-Roisin R (1998) Endothelial dysfunction in pulmonary arteries of patients with mild COPD. Am J Physiol 274(6 Pt 1):L908–L913

    CAS  PubMed  Google Scholar 

  • Qi Y, Jiang Q, Chen C, Cao Y, Qian L (2013) Circulating endothelial progenitor cells decrease in infants with bronchopulmonary dysplasia and increase after inhaled nitric oxide. PLoS One 8(11):e79060. doi:10.1371/journal.pone.0079060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajantie I1, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104(7):2084–2086

    Google Scholar 

  • Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107(8):1164–1169

    Article  PubMed  Google Scholar 

  • Reidy MA, Schwartz SM (1983) Endothelial injury and regeneration. IV. Endotoxin: a nondenuding injury to aortic endothelium. Lab Invest 48(1):25–34

    CAS  PubMed  Google Scholar 

  • Reidy MA, Schwartz SM (1984) Recent advances in molecular pathology. Arterial endothelium—assessment of in vivo injury. Exp Mol Pathol 41(3):419–434

    Article  CAS  PubMed  Google Scholar 

  • Roth RA, Reindel JF (1991) Lung vascular injury from monocrotaline pyrrole, a putative hepatic metabolite. Adv Exp Med Biol 283:477–487

    CAS  PubMed  Google Scholar 

  • Sakamaki Y, Matsumoto K, Mizuno S, Miyoshi S, Matsuda H, Nakamura T (2002) Hepatocyte growth factor stimulates proliferation of respiratory epithelial cells during postpneumonectomy compensatory lung growth in mice. Am J Respir Cell Mol Biol 26(5):525–533. doi:10.1165/ajrcmb.26.5.4714

    Article  CAS  PubMed  Google Scholar 

  • Schwarz TM, Leicht SF, Radic T, Rodriguez-Araboalaza I, Hermann PC, Berger F, Saif J, Bocker W, Ellwart JW, Aicher A, Heeschen C (2012) Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy. Arterioscler Thromb Vasc Biol 32(2):e13–e21. doi:10.1161/ATVBAHA.111.239822

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2):362–367

    CAS  PubMed  Google Scholar 

  • Sieveking DP, Buckle A, Celermajer DS, Ng MK (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51(6):660–668. doi:10.1016/j.jacc.2007.09.059

    Article  CAS  PubMed  Google Scholar 

  • Stenmark KR, Abman SH (2005) Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol 67:623–661. doi:10.1146/annurev.physiol.67.040403.102229

    Article  CAS  PubMed  Google Scholar 

  • Stump MM, Jordan GL Jr, Debakey ME, Halpert B (1963) Endothelium grown from circulating blood on isolated intravascular Dacron hub. Am J Pathol 43:361–367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suratt BT, Cool CD, Serls AE, Chen L, Varella-Garcia M, Shpall EJ, Brown KK, Worthen GS (2003) Human pulmonary chimerism after hematopoietic stem cell transplantation. Am J Respir Crit Care Med 168(3):318–322. doi:10.1164/rccm.200301-145OC

    Article  PubMed  Google Scholar 

  • Takahashi M, Nakamura T, Toba T, Kajiwara N, Kato H, Shimizu Y (2004) Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng 10(5–6):771–779. doi:10.1089/1076327041348563

    Article  PubMed  Google Scholar 

  • Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF, Tuder RM (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15(2):427–438. doi:10.1096/fj.00-0343com

    Article  CAS  PubMed  Google Scholar 

  • Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416(6880):542–545. doi:10.1038/nature730

    Article  CAS  PubMed  Google Scholar 

  • Thebaud B, Abman SH (2007) Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175(10):978–985. doi:10.1164/rccm.200611-1660PP

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M (2010) Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J 35(5):1079–1087. doi:10.1183/09031936.00072709

    Article  CAS  PubMed  Google Scholar 

  • Toshner M, Voswinckel R, Southwood M, Al-Lamki R, Howard LS, Marchesan D, Yang J, Suntharalingam J, Soon E, Exley A, Stewart S, Hecker M, Zhu Z, Gehling U, Seeger W, Pepke-Zaba J, Morrell NW (2009) Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med 180(8):780–787. doi:10.1164/rccm.200810-1662OC

    Article  PubMed Central  PubMed  Google Scholar 

  • Tuder RM, Chacon M, Alger L, Wang J, Taraseviciene-Stewart L, Kasahara Y, Cool CD, Bishop AE, Geraci M, Semenza GL, Yacoub M, Polak JM, Voelkel NF (2001a) Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol 195(3):367–374. doi:10.1002/path.953

    Article  CAS  PubMed  Google Scholar 

  • Tuder RM, Cool CD, Yeager M, Taraseviciene-Stewart L, Bull TM, Voelkel NF (2001b) The pathobiology of pulmonary hypertension. Endothelium. Clin Chest Med 22(3):405–418

    Article  CAS  PubMed  Google Scholar 

  • Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, Dimmeler S (2005) Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39(5):733–742. doi:10.1016/j.yjmcc.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  • Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89(1):E1–E7

    Article  CAS  PubMed  Google Scholar 

  • Wang XX, Zhang FR, Shang YP, Zhu JH, Xie XD, Tao QM, Chen JZ (2007) Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol 49(14):1566–1571. doi:10.1016/j.jacc.2006.12.037

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Kubo H, Kobayashi S, Ishizawa K, Numasaki M, Ueda S, Suzuki T, Sasaki H (2004) Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol 172(2):1266–1272

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Kubo H, Ishizawa K, Kobayashi S, Shinkawa M, Sasaki H (2005) Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax 60(5):410–413. doi:10.1136/thx.2004.034058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zani BG, Kojima K, Vacanti CA, Edelman ER (2008) Tissue-engineered endothelial and epithelial implants differentially and synergistically regulate airway repair. Proc Natl Acad Sci U S A 105(19):7046–7051. doi:10.1073/pnas.0802463105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Ingram DA, Murphy MP, Saadatzadeh MR, Mead LE, Prater DN, Rehman J (2009) Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. Am J Physiol Heart Circ Physiol 296(5):H1675–H1682. doi:10.1152/ajpheart.00665.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang M, Malik AB, Rehman J (2014) Endothelial progenitor cells and vascular repair. Curr Opin Hematol 21(3):224–228. doi:10.1097/MOH.0000000000000041

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96(4):442–450. doi:10.1161/01.RES.0000157672.70560.7b

    Article  CAS  PubMed  Google Scholar 

  • Zhao YY, Gao XP, Zhao YD, Mirza MK, Frey RS, Kalinichenko VV, Wang IC, Costa RH, Malik AB (2006) Endothelial cell-restricted disruption of FoxM1 impairs endothelial repair following LPS-induced vascular injury. J Clin Invest 116(9):2333–2343. doi:10.1172/JCI27154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao YD, Ohkawara H, Rehman J, Wary KK, Vogel SM, Minshall RD, Zhao YY, Malik AB (2009) Bone marrow progenitor cells induce endothelial adherens junction integrity by sphingosine-1-phosphate-mediated Rac1 and Cdc42 signaling. Circ Res 105(7):696–704. doi:10.1161/CIRCRESAHA.109.199778, 698 p following 704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JH, Wang XX, Zhang FR, Shang YP, Tao QM, Chen JZ (2008) Safety and efficacy of autologous endothelial progenitor cells transplantation in children with idiopathic pulmonary arterial hypertension: open-label pilot study. Pediatr Transplant 12(6):650–655. doi:10.1111/j.1399-3046.2007.00863.x

    Article  PubMed  Google Scholar 

  • Ziebart T, Yoon CH, Trepels T, Wietelmann A, Braun T, Kiessling F, Stein S, Grez M, Ihling C, Muhly-Reinholz M, Carmona G, Urbich C, Zeiher AM, Dimmeler S (2008) Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia. Circ Res 103(11):1327–1334. doi:10.1161/CIRCRESAHA.108.180463

    Article  CAS  PubMed  Google Scholar 

  • Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94(2):230–238. doi:10.1161/01.RES.0000110419.50982.1C

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Parker B. Francis fellowship (G.M.) and grants from the National Institutes of Health HL090152 (A.B.M.), GM094220 (J.R.), and HL118068 (A.B.M. and J.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asrar B. Malik Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marsboom, G., Zhang, M., Rehman, J., Malik, A.B. (2015). Vascular Repair and Regeneration by Endothelial Progenitor Cells. In: Firth, A., Yuan, JJ. (eds) Lung Stem Cells in the Epithelium and Vasculature. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-16232-4_17

Download citation

Publish with us

Policies and ethics