Skip to main content
  • 1103 Accesses

Abstract

For an isotherm such as the Langmuir isotherm, it becomes linear if the concentration range is sufficiently low. Each component’s isotherm will be independent of the other components. There will be no competition among the components for binding sites. Analytical LC usually involves small or dilute samples. Components in the sample are quickly diluted and/or separated away from each other during migration inside a column. Thus, interference effects among different sample components are often negligible. With the rapid growth of biotechnology, preparative- and large-scale LC operations become more and more important. High-feed concentrations and large sample volumes are often used to increase productivity. In such cases, interference effects may no longer be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helfferich FG, Klein G (1970) Multicomponent chromatography: theory of interference. Dekker, New York

    Google Scholar 

  2. Rhee H-K, Aris R, Amundson NR (1970) On the theory of multicomponent chromatography. Philos Trans R Soc Lond A Math Phys Sci 267:419–455

    Article  CAS  Google Scholar 

  3. Rhee H, Amundson NR (1974) Shock layer in two solute chromatography: effect of axial dispersion and mass transfer. Chem Eng Sci 29:2049–2060

    Article  CAS  Google Scholar 

  4. Yu Q, Yang J, Wang N-HL (1987) Multicomponent ion-exchange chromatography for separating amino acid mixtures. React Polym Ion Exch Sorbents 6:33–44. doi:10.1016/0167-6989(87)90205-4

    Article  CAS  Google Scholar 

  5. Tiselius A (1940) A new method for adsorption analysis of solutions. Ark Kemi Mineral Geol 14B:1

    Google Scholar 

  6. Wankat PC (1986) Large-scale adsorption and chromatography. CRC Press, Boca Raton, FL

    Google Scholar 

  7. Gu T (1990) Inclusion chromatography using cyclodextrin-containing resins and studies of nonlinear chromatographic theories. Purdue University, West Lafayette

    Google Scholar 

  8. Helfferich F (1962) Ligand exchange. II. Separation of ligands having different coordinative values. J Am Chem Soc 84:3242–3245

    Article  CAS  Google Scholar 

  9. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  10. Glueckauf E (1949) Theory of chromatography. Part VII. The general theory of two solutes following non-linear isotherms. Discus Faraday Soc 7:12–25

    Article  Google Scholar 

  11. Antia FD, Horváth C (1989) Operational modes of chromatographic separation processes. Ber Bunsenges Phys Chem 93:961–968. doi:10.1002/bbpc.19890930907

    Article  CAS  Google Scholar 

  12. Tiselius A (1943) Displacement development in adsorption analysis. Ark Kemi Mineral Geol 16A:1

    Google Scholar 

  13. Santacesaria E, Morbidelli M, Servida A, Storti G, Carra S (1982) Separation of xylenes on Y zeolites. 2. Breakthrough curves and their interpretation. Ind Eng Chem Process Des Dev 21:446–451

    Article  CAS  Google Scholar 

  14. Carra S, Santacesaria E, Morbidelli M, Storti G, Gelosa D (1982) Separation of xylenes on Y zeolites. 3. Pulse curves and their interpretation. Ind Eng Chem Process Des Dev 21:451–457

    Article  CAS  Google Scholar 

  15. Liapis AI, Rippin DWT (1978) The simulation of binary adsorption in activated carbon columns using estimates of diffusional resistance within the carbon particles derived from batc. Chem Eng Sci 33:593–600. doi:10.1016/0009-2509(78)80021-9

    Article  CAS  Google Scholar 

  16. Gu T, Tsao GT, Tsai G-J, Ladisch MR (1990) Displacement effect in multicomponent chromatography. AIChE J 36:1156–1162

    Article  CAS  Google Scholar 

  17. Gu T, Tsai G-J, Tsao GT (1991) Multicomponent adsorption and chromatography with uneven saturation capacities. AIChE J 37:1333–1340

    Article  CAS  Google Scholar 

  18. Thomas WJ, Lombardi JL (1971) Binary adsorption of benzene-toluene mixtures. Trans Inst Chem Eng 49:240

    CAS  Google Scholar 

  19. Hsieh JSC, Turian RM, Tien C (1977) Multicomponent liquid phase adsorption in fixed bed. AIChE J 23:263–275. doi:10.1002/aic.690230308

    Article  CAS  Google Scholar 

  20. Liapis AI, Litchfield RJ (1980) Ternary adsorption in columns. Chem Eng Sci 35:2366–2369

    Article  CAS  Google Scholar 

  21. Eble JE, Grob RL, Antle PE, Snyder LR (1987) Simplified description of high-performance liquid chromatographic separation under overload conditions, based on the Craig distribution model. III. Computer simulations for two co-eluting bands assuming a Langmuir isotherm. J Chromatogr A 405:1–29

    Article  CAS  Google Scholar 

  22. Pieri G, Piccardi P, Muratori G, Cavallo L (1983) Scale-up for preparative liquid-chromatography of fine chemicals. Chim Ind 65:331–336

    CAS  Google Scholar 

  23. Giddings JC (1965) Dynamics of chromatography. Part 1. Principles and theory. Dekker, New York

    Google Scholar 

  24. Bauman WC, Wheaton RM, Simpson DW (1956) Ion Exclusion. In: Nachod FC, Schubert J (eds) Ion exchange technology. Academic, New York

    Google Scholar 

  25. Eble JE, Grob RL, Antle PE, Snyder LR (1987) Simplified description of high-performance liquid chromatographic separation under overload conditions, based on the Craig distribution model. I. Computer simulations for a single elution band assuming a Langmuir isotherm. J Chromatogr A 384:25–44

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gu, T. (2015). Interference Effects in Multicomponent Chromatography. In: Mathematical Modeling and Scale-Up of Liquid Chromatography. Springer, Cham. https://doi.org/10.1007/978-3-319-16145-7_6

Download citation

Publish with us

Policies and ethics