Skip to main content

Abstract

For analytical and some small preparative columns in LC, mass transfer resistance is usually negligible and the equilibrium theory suffices [1]. However, for preparative columns with smaller plate numbers and large-scale columns, mass transfer effects are often significant and usually cannot be neglected. The study of mass transfer effects for single-component systems has been carried out by many researchers [2]. For example, Lee et al. [3] studied the mass transfer effects in nonlinear multicomponent elution ion-exchange chromatography. They discussed the differences between a general rate model and the equilibrium theory under various mass transfer conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helfferich FG, Klein G (1970) Multicomponent chromatography: theory of interference. Marcel Dekker, New York

    Google Scholar 

  2. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  3. Lee CK, Yu Q, Kim SU, Wang N-HL (1989) Mass transfer effects in isocratic non-linear elution chromatography. J Chromatogr A 484:29–59. doi:10.1016/S0021-9673(01)88961-5

    Article  CAS  Google Scholar 

  4. Gu T, Tsai G-J, Tsao GT (1991) A theoretical study of multicomponent radial flow chromatography. Chem Eng Sci 46:1279–1288

    Article  CAS  Google Scholar 

  5. Lee W-C (1989) PhD thesis. Purdue University, West Lafayette, IN

    Google Scholar 

  6. Weber SG, Carr PW (1989) The theory of the dynamics of liquid chromatography. In: Brown PR, Hartwick RA (eds) High performance liquid chromatography. Wiley, New York

    Google Scholar 

  7. Pfeffer R, Happel J (1964) An analytical study of heat and mass transfer in multiparticle systems at low Reynolds numbers. AIChE J 10:605–611. doi:10.1002/aic.690100507

    Article  CAS  Google Scholar 

  8. Wilson EJ, Geankoplis CJ (1966) Liquid mass transfer at very low Reynolds numbers in packed beds. Ind Eng Chem Fund 5:9–14. doi:10.1021/i160017a002

    Article  CAS  Google Scholar 

  9. Kaizuma H, Myers MN, Giddings JC (1970) Evaluation of coupling and turbulence by the dynamical comparison of gas and liquid chromatography. J Chromatogr Sci 8:630–634. doi:10.1093/chromsci/8.11.630

    Article  CAS  Google Scholar 

  10. Horvath C, Lin H-J (1976) Movement and band spreading of unsorbed solutes in liquid chromatography. J Chromatogr A 126:401–420. doi:10.1016/S0021-9673(01)84088-7

    Article  CAS  Google Scholar 

  11. Antia FD, Horváth C (1989) Operational modes of chromatographic separation processes. Berichte der Bunsengesellschaft für physikalische Chemie 93:961–968. doi:10.1002/bbpc.19890930907

    Article  CAS  Google Scholar 

  12. Giddings JC (1965) Dynamics of chromatography. Part 1, Principles and theory. Marcel Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gu, T. (2015). Mass Transfer Effects in Liquid Chromatography Simulation. In: Mathematical Modeling and Scale-Up of Liquid Chromatography. Springer, Cham. https://doi.org/10.1007/978-3-319-16145-7_5

Download citation

Publish with us

Policies and ethics