Skip to main content
  • 1118 Accesses

Abstract

One of the critical factors for a successful scale-up of LC using the rate models is accurate parameter estimation. Three types of parameters are needed to carry out model calculations using the rate models. Isotherm parameters, the particle porosity, and the bed void volume fraction are most important to the accuracy of model calculations. Physical dimensions of the column are also important, but they can be specified or precisely measured. Less important parameters are the mass transfer parameters that usually do not affect the general location of an elution peak. They affect the sharpness of a peak or breakthrough curve. However, such an influence is not extremely sensitive to the minor fluctuations of the mass transfer parameters. Thus, the estimation of these parameters does not have to be very stringent. As always, parameter sensitivity analysis can be carried out using computer simulation by varying a parameter (say 10 %, 20 %, or more) to see the impact on the chromatogram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  2. Gu T, Iyer G, Cheng K-SC (2013) Parameter estimation and rate model simulation of partial breakthrough of bovine serum albumin on a column packed with large Q Sepharose anion-exchange particles. Sep Purif Technol 116:319–326

    Article  CAS  Google Scholar 

  3. Gu T, Zheng Y (1999) A study of the scale-up of reversed-phase liquid chromatography. Sep Purif Technol 15:41–58. doi:10.1016/S1383-5866(98)00083-5

    Article  CAS  Google Scholar 

  4. Snyder LR, Cox GB, Antle PE (1988) Preparative separation of peptide and protein samples by high-performance liquid chromatography with gradient elution: I. The Craig model as a basis for computer simulations. J Chromatogr A 444:303–324. doi:10.1016/S0021-9673(01)94033-6

    Article  CAS  Google Scholar 

  5. Jacobson J, Frenz J, Horváth C (1984) Measurement of adsorption isotherms by liquid chromatography. J Chromatogr A 316:53–68. doi:10.1016/S0021-9673(00)96140-5

    Article  CAS  Google Scholar 

  6. Snyder LR, Kirkland JJ, Glajch JL (2012) Practical HPLC method development. Wiley, New York

    Google Scholar 

  7. Syu M-J, Tsai G-J, Tsao G (1993) Artificial neural network modeling of adsorptive separation. In: Tsao GT (ed) Chromatography. Springer, Berlin, pp 97–122

    Chapter  Google Scholar 

  8. De Ligny CL (1970) Coupling between diffusion and convection in radial dispersion of matter by fluid flow through packed beds. Chem Eng Sci 25:1177–1181. doi:10.1016/0009-2509(70)85007-2

    Article  Google Scholar 

  9. Langer G, Roethe A, Roethe KP, Gelbin D (1978) Heat and mass transfer in packed beds—III. Axial mass dispersion. Int J Heat Mass Transf 21:751–759

    Article  CAS  Google Scholar 

  10. Giddings JC (1959) “Eddy” diffusion in chromatography. Nature 184:357–358

    Article  CAS  Google Scholar 

  11. Polson A (1950) Some aspects of diffusion in solution and a definition of a colloidal particle. J Phys Chem 54:649–652

    Article  CAS  Google Scholar 

  12. Geankoplis CJ (1993) Transport processes and unit operations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  13. Chung SF, Wen CY (1968) Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE J 14:857–866

    Article  CAS  Google Scholar 

  14. Striegel A, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography. Wiley, New York, p 84

    Book  Google Scholar 

  15. Geankoplis CJ (1993) Drying of process materials. Transport processes and unit operations. Prentice-Hall, Englewood Cliffs, pp 520–583

    Google Scholar 

  16. Satterfield CN (1970) Mass transfer in heterogeneous catalysis. MIT Press, Cambridge, MA

    Google Scholar 

  17. Li Z, Gu Y, Gu T (1998) Mathematical modeling and scale-up of size-exclusion chromatography. Biochem Eng J 2:145–155. doi:10.1016/S1369-703X(98)00027-8

    Article  CAS  Google Scholar 

  18. Wilson EJ, Geankoplis CJ (1966) Liquid mass transfer at very low Reynolds numbers in packed beds. Ind Eng Chem Fundam 5:9–14. doi:10.1021/i160017a002

    Article  CAS  Google Scholar 

  19. Kataoka T, Yoshida H, Ueyama K (1972) Mass transfer in laminar region between liquid and packing material surface in the packed bed. J Chem Eng Jpn 5:132–136

    Article  CAS  Google Scholar 

  20. Carberry JJ (1960) A boundary-layer model of fluid-particle mass transfer in fixed beds. AIChE J 6:460–463. doi:10.1002/aic.690060323

    Article  CAS  Google Scholar 

  21. Pfeffer R (1964) Heat and mass transport in multiparticle systems. Ind Eng Chem Fundam 3:380–383. doi:10.1021/i160012a018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

4.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table 4.1

ParameterEstimation (XLS 29.5 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gu, T. (2015). Parameter Estimation. In: Mathematical Modeling and Scale-Up of Liquid Chromatography. Springer, Cham. https://doi.org/10.1007/978-3-319-16145-7_4

Download citation

Publish with us

Policies and ethics