Skip to main content

General Multicomponent Rate Model for Column Liquid Chromatography

  • Chapter
Mathematical Modeling and Scale-Up of Liquid Chromatography
  • 1168 Accesses

Abstract

For the modeling of multicomponent LC, the column is divided into the bulk-fluid phase and the particle phase. The anatomy of a fixed-bed axial flow chromatography column is given in Fig. 3.1. To formulate a general rate model, the following basic assumptions are made:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena. Wiley, New York

    Google Scholar 

  2. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  3. Reddy JN (1984) An introduction to the finite element method. McGraw-Hill, New York

    Google Scholar 

  4. Finlayson BA (2003) Nonlinear analysis in chemical engineering. Ravenna Park, Seattle, WA

    Google Scholar 

  5. Brown PN, Byrne GD, Hindmarsh AC (1989) VODE: a variable-coefficient ODE solver. SIAM J Sci Stat Comp 10:1038–1051. doi:10.1137/0910062

    Article  Google Scholar 

  6. Lin B, Golshan-Shirazi S, Ma Z, Guiochon G (1988) Shock effects in nonlinear chromatography. Anal Chem 60:2647–2653

    Article  CAS  Google Scholar 

  7. Gu T, Iyer G, Cheng K-SC (2013) Parameter estimation and rate model simulation of partial breakthrough of bovine serum albumin on a column packed with large Q Sepharose anion-exchange particles. Sep Purif Technol 116:319–326

    Article  CAS  Google Scholar 

  8. Stroud AH, Secrest D (1966) Gaussian quadrature formulas. Prentice-Hall, London

    Google Scholar 

  9. Danckwerts PV (1953) Continuous flow systems: distribution of residence times. Chem Eng Sci 2:1–13. doi:10.1016/0009-2509(53)80001-1

    Article  CAS  Google Scholar 

  10. Parulekar SJ, Ramkrishna D (1984) Analysis of axially dispersed systems with general boundary conditions-I-, II, III. Chem Eng Sci 39:1571–1611. doi:10.1016/0009-2509(84)80085-8

    Article  CAS  Google Scholar 

  11. Lee WC, Huang SH, Tsao GT (1988) A unified approach for moments in chromatography. AIChE J 34:2083–2087

    Article  CAS  Google Scholar 

  12. Brian BF, Zwiebel I, Artigue RS (1987) Numerical simulation of fixed bed adsorption dynamics by the method of lines. AIChE Symp Ser 83:80–86

    CAS  Google Scholar 

  13. Lin B, Ma Z, Guiochon G (1989) Study of the influence of axial dispersion on the band profile in nonlinear chromatography using the Lax-Wendroff method. Sep Sci Technol 24:809–829. doi:10.1080/01496398908049877

    Article  CAS  Google Scholar 

  14. Lee W-C, Tsai G-J, Tsao GT (1990) Radial-flow affinity chromatography for trypsin purification. ACS Symp Ser 427:104–117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gu, T. (2015). General Multicomponent Rate Model for Column Liquid Chromatography. In: Mathematical Modeling and Scale-Up of Liquid Chromatography. Springer, Cham. https://doi.org/10.1007/978-3-319-16145-7_3

Download citation

Publish with us

Policies and ethics