Skip to main content
  • 1124 Accesses

Abstract

Affinity chromatography is a powerful tool for the purification of enzymes, antibodies, antigens, and many other proteins and macromolecules that are important in scientific research and development of novel biological drugs. Affinity chromatography not only purifies a product, but also concentrates the product to a great extent [1]. Over the years, this subject has been reviewed by many people, including Chase [1] and Liapis [2]. Affinity chromatography is also called biospecific adsorption, since it utilizes the biospecific binding between solute molecules and immobilized ligands that is often compared with the fitting of a lock and its key. The monovalent binding between a ligand and a solute macromolecule is generally treated as second-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chase HA (1984) Affinity separations utilising immobilised monoclonal antibodies—a new tool for the biochemical engineer. Chem Eng Sci 39:1099–1125. doi:10.1016/0009-2509(84)85074-5

    Article  CAS  Google Scholar 

  2. Liapis AI (1989) Theoretical aspects of affinity chromatography. J Biotechnol 11:143–160. doi:10.1016/0168-1656(89)90116-8

    Article  CAS  Google Scholar 

  3. Lee W-C (1989) PhD thesis. Purdue University, West Lafayette, IN

    Google Scholar 

  4. Arnold FH, Schofield SA, Blanch HW (1986) Analytical affinity chromatography: I. Local equilibrium theory and the measurement of association and inhibition constants. J Chromatogr A 355:1–12. doi:10.1016/S0021-9673(01)97299-1

    Article  CAS  Google Scholar 

  5. Lee W-C, Tsai G-J, Tsao GT (1990) Radial-flow affinity chromatography for trypsin purification. ACS Symp Ser 427:104–117

    Article  CAS  Google Scholar 

  6. Arve BH, Liapis AI (1987) The modeling and analysis of the elution stage of biospecific adsorption in fixed beds. Biotechnol Bioeng 30:638–649. doi:10.1002/bit.260300508

    Article  CAS  Google Scholar 

  7. Arve BH, Liapis AI (1988) Biospecific adsorption in fixed and periodic countercurrent beds. Biotechnol Bioeng 32:616–627

    Article  CAS  Google Scholar 

  8. Chase HA (1984) Prediction of the performance of preparative affinity chromatography. J Chromatogr A 297:179–202. doi:10.1016/S0021-9673(01)89041-5

    Article  CAS  Google Scholar 

  9. Arnold FH, Blanch HW, Wilke CR (1985) Analysis of affinity separations: I: Predicting the performance of affinity adsorbers. Chem Eng J 30:B9–B23. doi:10.1016/0300-9467(85)80016-2

    Article  CAS  Google Scholar 

  10. Arnold FH, Blanch HW, Wilke CR (1985) Analysis of affinity separations II: The characterization of affinity columns by pulse techniques. Chem Eng J 30:B25–B36. doi:10.1016/0300-9467(85)80017-4

    Article  CAS  Google Scholar 

  11. Arnold FH, Blanch HW (1986) Analytical affinity chromatography: II. Rate theory and the measurement of biological binding kinetics. J Chromatogr A 355:13–27. doi:10.1016/S0021-9673(01)97300-5

    Article  CAS  Google Scholar 

  12. Arve BH, Liapis AI (1987) Modeling and analysis of biospecific adsorption in a finite bath. AIChE J 33:179–193. doi:10.1002/aic.690330203

    Article  CAS  Google Scholar 

  13. Froment GF, Bischoff KB, De Wilde J (1990) Chemical reactor analysis and design. Wiley, New York

    Google Scholar 

  14. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  15. Gu T (1990) Inclusion chromatography using cyclodextrin-containing resins and studies of nonlinear chromatographic theories. Purdue University, West Lafayette

    Google Scholar 

  16. Arve BH, Liapis AI (1988) Modeling and analysis of elution stage of biospecific adsorption in finite bath. Biotechnol Bioeng 31:240–249. doi:10.1002/bit.260310310

    Article  CAS  Google Scholar 

  17. Gu T, Hsu KH, Syu MJ (2003) Scale-up of affinity chromatography for purification of enzymes and other proteins. Enzym Microb Technol 33:430–437

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

10.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table 10.1

ParameterEstimationAffinity (XLS 31 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gu, T. (2015). Modeling of Slow Kinetics and Affinity Chromatography. In: Mathematical Modeling and Scale-Up of Liquid Chromatography. Springer, Cham. https://doi.org/10.1007/978-3-319-16145-7_10

Download citation

Publish with us

Policies and ethics