Skip to main content

Compressive Gaussian Mixture Estimation

  • Chapter
Compressed Sensing and its Applications

Abstract

When performing a learning task on voluminous data, memory and computational time can become prohibitive. In this chapter, we propose a framework aimed at estimating the parameters of a density mixture on training data in a compressive manner by computing a low-dimensional sketch of the data. The sketch represents empirical moments of the underlying probability distribution. Instantiating the framework on the case where the densities are isotropic Gaussians, we derive a reconstruction algorithm by analogy with compressed sensing. We experimentally show that it is possible to precisely estimate the mixture parameters provided that the sketch is large enough, while consuming less memory in the case of numerous data. The considered framework also provides a privacy-preserving data analysis tool, since the sketch does not disclose information about individual datum it is based on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Namely, a model of probability measures.

  2. 2.

    We also performed experiments where all the weights were equal to \(\frac{1} {k}\) and this didn’t alter the conclusions drawn from the experiments.

References

  1. Achlioptas, D.: Database-friendly random projections. In: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 274–281 (2001)

    Google Scholar 

  2. Bertin, K., Pennec, E.L., Rivoirard, V.: Adaptive Dantzig density estimation. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques 47(1), 43–74 (2011)

    Article  MATH  Google Scholar 

  3. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourrier, A., Davies, M.E., Peleg, T., Pérez, P., Gribonval, R.: Fundamental performance limits for ideal decoders in high-dimensional linear inverse problems. IEEE Trans. Inf. Theory 60, 7928–7946 (2013)

    Article  MATH  Google Scholar 

  5. Bourrier, A., Gribonval, R., Pérez, P.: Compressive Gaussian mixture estimation. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (2013)

    Google Scholar 

  6. Bunea, F., Tsybakov, A.B., Wegkamp, M., Barbu, A.: Spades and mixture models. Ann. Stat. 38(4), 2525–2558 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calderbank, R., Schapire, R., Jafarpour, S.: Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain. Preprint (2009)

    Google Scholar 

  8. Candès, E.J., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313–2351 (2007)

    Article  MATH  Google Scholar 

  9. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. In: ICALP, pp. 693–703 (2002)

    Google Scholar 

  10. Cormode, G., Hadjieleftheriou, M.: Methods for finding frequent items in data streams. VLDB J. 19(1), 3–20 (2010)

    Article  Google Scholar 

  11. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its applications. In: LATIN, pp. 29–38 (2004)

    Google Scholar 

  12. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  13. Gilbert, A.C., Strauss, M.J., Tropp, J.A., Vershynin, R.: One sketch for all: fast algorithms for compressed sensing. In: STOC, pp. 237–246 (2007)

    Google Scholar 

  14. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: VLDB, pp. 518–529 (1999)

    Google Scholar 

  15. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: STOC, pp. 604–613 (1998)

    Google Scholar 

  16. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Conference in Modern Analysis and Probability (New Haven, Conn., 1982). Contemporary Mathematics, vol. 26, pp. 189–206. American Mathematical Society, Providence (1984)

    Google Scholar 

  17. Thaper, N., Guha, S., Indyk, P., Koudas, N.: Dynamic multidimensional histograms. In: ACM SIGMOD International Conference on Management of Data (2002)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Research Council, PLEASE project (ERC-StG-2011-277906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Gribonval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bourrier, A., Gribonval, R., Pérez, P. (2015). Compressive Gaussian Mixture Estimation. In: Boche, H., Calderbank, R., Kutyniok, G., Vybíral, J. (eds) Compressed Sensing and its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-16042-9_8

Download citation

Publish with us

Policies and ethics