Skip to main content

Compressed Sensing, Sparse Inversion, and Model Mismatch

  • Chapter
Compressed Sensing and its Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The advent of compressed sensing theory has revolutionized our view of imaging, as it demonstrates that subsampling has manageable consequences for image inversion, provided that the image is sparse in an apriori known dictionary. For imaging problems in spectrum analysis (estimating complex exponential modes), and passive and active radar/sonar (estimating Doppler and angle of arrival), this dictionary is usually taken to be a DFT basis (or frame) constructed for resolution of 2πn, with n a window length, array length, or pulse-to-pulse processing length. However, in reality no physical field is sparse in a DFT frame or in any apriori known frame. No matter how finely we grid the parameter space (e.g., frequency, delay, Doppler, and/or wavenumber) the sources may not lie in the center of the grid cells and consequently there is always mismatch between the assumed and the actual frames for sparsity. But what is the sensitivity of compressed sensing to mismatch between the physical model that generated the data and the mathematical model that is assumed in the sparse inversion algorithm? In this chapter, we study this question. The focus is on the canonical problem of DFT inversion for modal analysis.

The authors were supported in part by the NSF by Grants CCF-1018472, CCF-1017431, CCF-0916314, CCF-0915299, and CCF-1422658.

©2011 IEEE. Reprinted, with permission, from Y. Chi, L. L. Scharf, A. Pezeshki, A. R. Calderbank, “Sensitivity to basis mismatch in compressed sensing,” IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2182–2195, May 2011.

©2011 IEEE. Reprinted, with permission, from L. L. Scharf, E. K. P. Chong, A. Pezeshki, and J. R. Luo, “Sensitivity considerations in compressed sensing,” Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, 6–9 Nov. 2011, pp. 744–748.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baraniuk, R., Steeghs, P.: Compressive radar imaging. In: Proc. 2007 IEEE radar conf., pp. 128–133. Waltham, Massachusetts (2007)

    Google Scholar 

  2. Candes, E., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. preprint (Mar. 2012, arxiv:1203.5871.)

    Google Scholar 

  3. Candés, E.J.: The restricted isometry property and its implications for compressed sensing. Académie des Sciences 1(346), 589–592 (2008)

    Google Scholar 

  4. Candés, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candés, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51, 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  6. Cevher, V., Gurbuz, A., McClellan, J., Chellappa, R.: Compressive wireless arrays for bearing estimation of sparse sources in angle domain. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2497–2500. Las Vegas, Nevada (2008)

    Google Scholar 

  7. Chandrasekaran, V., Recht, B., Parrilo, P.A., Willsky, A.S.: The convex geometry of linear inverse problems. Found. Comput. Math. 12(6), 805–849 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Chi, Y.: Spectral compressed sensing via structured matrix completion. In: Proc. International Conference on Machine Learning (ICML) (2013)

    Google Scholar 

  9. Chen, Y., Chi, Y.: Robust spectral compressed sensing via structured matrix completion. preprint (2013, arXiv:1304.8126.)

    Google Scholar 

  10. Chi, Y., Chen, Y.: Compressive recovery of 2-D off-grid frequencies. In: Conf. rec. asilomar conf. signals, systems, and computers (2013)

    Book  Google Scholar 

  11. Chi, Y., Scharf, L.L., Pezeshki, A., Calderbank, R.: Sensitivity to basis mismatch in compressed sensing. IEEE Trans. Signal Process. 59(5), 2182–2195 (2011)

    Article  MathSciNet  Google Scholar 

  12. Duarte, M.F., Baraniuk, R.G.: Spectral compressive sensing. Appl. Comput. Harmon. Anal. 35(1), 111–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fannjiang, A., Yan, P., Strohmer, T.: Compressed remote sensing of sparse objects. SIAM J. Imag. Sci. 3(3), 595–618 (2010)

    Article  MathSciNet  Google Scholar 

  14. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins Univ. Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  15. Gurbuz, A., McClellan, J., Cevher, V.: A compressive beamforming method. In: Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 2617–2620. Las Vegas, NV (2008)

    Google Scholar 

  16. Herman, M.A., Needell, D.: Mixed operators in compressed sensing. In: Proc. 44th Annual Conference on Information Sciences and Systems (CISS). Princeton, NJ (2010)

    Google Scholar 

  17. Herman, M.A., Strohmer, T.: High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)

    Article  MathSciNet  Google Scholar 

  18. Herman, M.A., Strohmer, T.: General deviants: an analysis of perturbations in compressed sensing. IEEE J. Sel. Top. Sign. Proces.: Special Issue on Compressive Sens. 4(2), 342–349 (2010)

    Google Scholar 

  19. Hua, Y.: Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Trans. Signal Process. 40(9), 2267–2280 (1992)

    Article  MATH  Google Scholar 

  20. Karim, H., Viberg, M.: Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    Article  Google Scholar 

  21. Klemm, R.: Space-Time Adaptive Processing. IEEE Press, UK (1998)

    Google Scholar 

  22. McWhorter, L.T., Scharf, L.L.: Cramer-Rao bounds for deterministic modal analysis. IEEE Trans. Signal Process. 41(5), 1847–1862 (1993)

    Article  MATH  Google Scholar 

  23. Mullis, C.T., Scharf, L.L.: Quadratic estimators of the power spectrum. In: Haykin, S. (ed.) Advances in Spectrum Estimation, vol. 1, chap. 1, pp. 1–57. Prentice Hall, Englewood Cliffs, NJ (1990)

    Google Scholar 

  24. Needell, D., Tropp, J.: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301–321 (2008)

    Article  MathSciNet  Google Scholar 

  25. Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 9, 317–334 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Needell, D., Vershynin, R.: Signal recovery from inaccurate and incomplete measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Sign. Proces. 4(2), 310–316 (2010)

    Article  Google Scholar 

  27. Pezeshki, A., Veen, B.D.V., Scharf, L.L., Cox, H., Lundberg, M.: Eigenvalue beamforming using a generalized sidelobe canceller and subset selection. IEEE Trans. Signal Process. 56(5), 1954–1967 (2008)

    Article  MathSciNet  Google Scholar 

  28. Scharf, L.L.: Statistical Signal Processing. Addison-Wesley, MA (1991)

    MATH  Google Scholar 

  29. Scharf, L.L., Chong, E.K.P., Pezeshki, A., Luo, J.: Sensitivity considerations in compressed sensing. In: Conf. Rec. Forty-fifth Asilomar Conf. Signals, Syst. Pacific Grove, CA (2011)

    Book  Google Scholar 

  30. Scharf, L.L., Friedlander, B.: Matched subspace detectors. IEEE Trans. Signal Process. 42(8), 2146–2157 (1994)

    Article  MATH  Google Scholar 

  31. Tang, G., Bhaskar, B.N., Shah, P., Recht, B.: Compressed sensing off the grid. preprint (Jul. 2012, arxiv:1207.6053.)

    Google Scholar 

  32. Trees, H.L.V., Bell, K.L.: Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking. IEEE Press, New York (2007)

    Book  MATH  Google Scholar 

  33. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12) (1992)

    Google Scholar 

  34. Tufts, D.W., Kumaresan, R.: Estimation of frequencies of multiple sinusoids: making linear prediction perform like maximum likelihood. Proc. IEEE. 70, 975–989 (1982)

    Article  Google Scholar 

  35. Tufts, D.W., Kumaresan, R.: Singular value decomposition and improved frequency estimation using linear prediction. IEEE Trans. Acoust. Speech Signal Process. 30(4), 671–675 (1982)

    Article  Google Scholar 

  36. Van Trees, H.L.: Optimum Array Processing. Wiley Interscience, New York (2002)

    Book  Google Scholar 

  37. Ward, J.: Maximum likelihood angle and velocity estimation with space-time adaptive processing radar. In: Conf. Rec. 1996 Asilomar Conf. Signals, Systs., Comput., pp. 1265–1267. Pacific Grove, CA (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Pezeshki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pezeshki, A., Chi, Y., Scharf, L.L., Chong, E.K.P. (2015). Compressed Sensing, Sparse Inversion, and Model Mismatch. In: Boche, H., Calderbank, R., Kutyniok, G., Vybíral, J. (eds) Compressed Sensing and its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-16042-9_3

Download citation

Publish with us

Policies and ethics