Skip to main content
  • 3007 Accesses

Abstract

DNA methylation and histone modifications are crucial epigenetic modifications that involved in transcriptional regulatory network. Due to environmental cues, distortion in epigenomic landscape—in DNA methylation and histone modification—might be considered as a reason for aberrant gene expression in cancer. A confounding puzzle in cancer epigenetics is to decipher whether a significant mechanism between DNA methylation and histone modification triggers tumorigenesis initiation and progression. ChIP-BS-seq is a technique that combines chromatin immunoprecipitation and bisulfite conversion followed by high-throughput sequencing to study genome-wide cross talk between DNA methylation and histone modification. In this chapter, we have explored background, technological advancement in epigenomics research and its future developments. We also have summarized our latest findings on using ChIP-BS-seq in cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.

    Article  CAS  PubMed  Google Scholar 

  2. Bird AP, Wolffe AP. Methylation-induced repression—belts, braces, and chromatin. Cell. 1999;99(5):451–4.

    Article  CAS  PubMed  Google Scholar 

  3. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  4. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16(4):168–74.

    Article  CAS  PubMed  Google Scholar 

  5. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21(2):163–7.

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen CT, Gonzales FA, Jones PA. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 2001;29(22):4598–606.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fahrner JA, Eguchi S, Herman JG, Baylin SB. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res. 2002;62(24):7213–8.

    CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  9. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007;8(4):286–98.

    Article  CAS  PubMed  Google Scholar 

  10. Statham AL, Robinson MD, Song JZ, Coolen MW, Stirzaker C, Clark SJ. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res. 2012;22(6):1120–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Brinkman AB, Gu H, Bartels SJ, Zhang Y, Matarese F, Simmer F, Marks H, Bock C, Gnirke A, Meissner A, et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 2012;22(6):1128–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Richmond TJ, Luger K, Mäder AW, Richmond RK, Sargent DF. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389(6648):251–60.

    Article  PubMed  Google Scholar 

  13. Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. 1999;98(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  14. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  CAS  PubMed  Google Scholar 

  15. Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15(5):490–5.

    Article  CAS  PubMed  Google Scholar 

  16. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406(6796):593–9.

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2012;13(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  19. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.

    Article  CAS  PubMed  Google Scholar 

  20. Karytinos A, Forneris F, Profumo A, Ciossani G, Battaglioli E, Binda C, Mattevi A. A novel mammalian flavin-dependent histone demethylase. J Biol Chem. 2009;284(26):17775–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature. 2009;461(7262):415–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hayami S, Kelly JD, Cho H-S, Yoshimatsu M, Unoki M, Tsunoda T, Field HI, Neal DE, Yamaue H, Ponder BAJ, et al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer. 2011;128(3):574–86.

    Article  CAS  PubMed  Google Scholar 

  23. Rotili D, Mai A. Targeting histone demethylases: a new avenue for the fight against cancer. Genes Cancer. 2011;2(6):663–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321(6067):209–13.

    Article  CAS  PubMed  Google Scholar 

  25. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304.

    Article  CAS  PubMed  Google Scholar 

  26. Ikegami K, Ohgane J, Tanaka S, Yagi S, Shiota K. Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development. Int J Dev Biol. 2009;53(2–3):203–14.

    Article  CAS  PubMed  Google Scholar 

  27. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cross SH, Bird AP. CpG islands and genes. Curr Opin Genet Dev. 1995;5(3):309–14.

    Article  CAS  PubMed  Google Scholar 

  29. Greger V, Passarge E, Höpping W, Messmer E, Horsthemke B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989;83(2):155–8.

    Article  CAS  PubMed  Google Scholar 

  30. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1(7):686–92.

    Article  CAS  PubMed  Google Scholar 

  31. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525–30.

    CAS  PubMed  Google Scholar 

  32. Gonzalez-Zulueta M, Bender CM, Yang AS, Nguyen T, Beart RW, Van Tornout JM, Jones PA. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995;55(20):4531–5.

    CAS  PubMed  Google Scholar 

  33. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225–9.

    CAS  PubMed  Google Scholar 

  34. Reik W, Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr ARW, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, et al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 2010;6(9):e1001134.

    Article  Google Scholar 

  35. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A. 2006;103(5):1412–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Koche RP, Smith ZD, Adli M, Gu H, Ku M, Gnirke A, Bernstein BE, Meissner A. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell. 2011;8(1):96–105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G, Vanti WB, Shih A, et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature. 2012;488(7413):652–5.

    Article  CAS  PubMed  Google Scholar 

  39. Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden J-M, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2005;439(7078):871–4.

    Article  PubMed  Google Scholar 

  40. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet. 2006;39(2):232–6.

    Article  PubMed  Google Scholar 

  41. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.

    Article  CAS  PubMed  Google Scholar 

  42. Xie W, Schultz Matthew D, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker John W, Tian S, Hawkins RD, Leung D, et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell. 2013;153(5):1134–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Gifford Casey A, Ziller Michael J, Gu H, Trapnell C, Donaghey J, Tsankov A, Shalek Alex K, Kelley David R, Shishkin Alexander A, Issner R, et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell. 2013;153(5):1149–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hahn MA, Hahn T, Lee DH, Esworthy RS, Bw K, Riggs AD, Chu FF, Pfeifer GP. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res. 2008;68(24):10280–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol. 2001;21(13):4330–6.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH. A protein interaction network for pluripotency of embryonic stem cells. Nature. 2006;444(7117):364–8.

    Article  CAS  PubMed  Google Scholar 

  47. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276(5688):565–70.

    Article  CAS  PubMed  Google Scholar 

  48. Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA. Histone methyltransferase activity of a drosophila polycomb group repressor complex. Cell. 2002;111(2):197–208.

    Article  PubMed  Google Scholar 

  49. Cao R. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science. 2002;298(5595):1039–43.

    Article  CAS  PubMed  Google Scholar 

  50. Margueron R, Reinberg D. The polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ringrose L, Paro R. Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu Rev Genet. 2004;38(1):413–43.

    Article  CAS  PubMed  Google Scholar 

  52. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6(11):846–56.

    Article  CAS  PubMed  Google Scholar 

  53. Francis NJ. Chromatin compaction by a polycomb group protein complex. Science. 2004;306(5701):1574–7.

    Article  CAS  PubMed  Google Scholar 

  54. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao XD, Han X, Chew JL, Liu J, Chiu KP, Choo A, Orlov YL, Sung W-K, Shahab A, Kuznetsov VA, et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell. 2007;1(3):286–98.

    Article  CAS  PubMed  Google Scholar 

  56. Brandeis M, Frank D, Keshet I, Siegfried Z, Mendelsohn M, Names A, Temper V, Razin A, Cedar H. Spl elements protect a CpG island from de novo methylation. Nature. 1994;371(6496):435–8.

    Article  CAS  PubMed  Google Scholar 

  57. Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schübeler D. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008;30(6):755–66.

    Article  CAS  PubMed  Google Scholar 

  58. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454(7205):766–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol. 2007;27(10):3769–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Leeb M, Pasini D, Novatchkova M, Jaritz M, Helin K, Wutz A. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev. 2010;24(3):265–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042–54.

    Article  CAS  PubMed  Google Scholar 

  62. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, et al. A stem cell–like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39(2):237–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Andrews 3rd DF, Nemunaitis J, Tompkins C, Singer JW. Effect of 5-azacytidine on gene expression in marrow stromal cells. Mol Cell Biol. 1989;9(6):2748–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Ushijima T, Sasako M. Focus on gastric cancer. Cancer Cell. 2004;5(2):121–5.

    Article  CAS  PubMed  Google Scholar 

  65. Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983;132(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  66. Eden A. Response to comment on “chromosomal instability and tumors promoted by DNA hypomethylation” and “induction of tumors in mice by genomic hypomethylation”. Science. 2003;302(5648):1153c.

    Article  Google Scholar 

  67. Yang AS. Comment on “chromosomal instability and tumors promoted by DNA hypomethylation” and “induction of tumors in mice by genomic hypomethylation”. Science. 2003;302(5648):1153b–1153.

    Article  Google Scholar 

  68. Das PM. DNA methylation and cancer. J Clin Oncol. 2004;22(22):4632–42.

    Article  CAS  PubMed  Google Scholar 

  69. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93(18):9821–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Meissner A. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33(18):5868–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Versteeg R. Aberrant methylation in cancer. Am J Hum Genet. 1997;60(4):751–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Gao F, Ji G, Gao Z, Han X, Ye M, Yuan Z, Luo H, Huang X, Natarajan K, Wang J, et al. Direct ChIP-bisulfite sequencing reveals a role of H3K27me3 mediating aberrant hypermethylation of promoter CpG islands in cancer cells. Genomics. 2014;103(2–3):204–10.

    Article  CAS  PubMed  Google Scholar 

  73. Blagosklonny MV, Ke X-S, Qu Y, Rostad K, Li W-C, Lin B, Halvorsen OJ, Haukaas SA, Jonassen I, Petersen K, et al. Genome-wide profiling of histone H3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS One. 2009;4(3):e4687.

    Article  Google Scholar 

  74. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T-K, Koche RP, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell. 2007;1(3):299–312.

    Article  CAS  PubMed  Google Scholar 

  76. Benetti R, Gonzalo S, Jaco I, Muñoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol. 2008;15(3):268–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol. 2008;15(3):259–67.

    Article  CAS  PubMed  Google Scholar 

  78. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9(1):171–81.

    Article  CAS  PubMed  Google Scholar 

  79. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013;23(12):2126–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Lee JJ, Murphy GF, Lian CG. Melanoma epigenetics: novel mechanisms, markers, and medicines. Lab Invest. 2014;94(8):822–38.

    Article  CAS  PubMed  Google Scholar 

  82. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the nanog, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. 2009;18(7):1093–108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Natarajan, K., Gao, F. (2015). ChIP-BS-Sequencing in Cancer Epigenomics. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15811-2_12

Download citation

Publish with us

Policies and ethics