Skip to main content

A Lifetime of Memories: Raymond Kesner’s Contributions of the Attribute Model in Understanding Amnesia

  • Chapter
  • First Online:
The Neurobiological Basis of Memory

Abstract

Extensive research indicates that the hippocampus is crucial for the formation and use of memory in humans. Memory is extremely complex in terms of the kind of information that is represented in the brain, the processes associated with it, and its distribution across a variety of neural systems. While most investigators agree that the hippocampus is an essential neural structure involved in memory, debate remains regarding the exact information the hippocampus processes such as temporal, spatial, sensory (e.g., odors, objects, sounds, etc.), response, reward, linguistic, and relational information. In the context of the Attribute Model of Memory, this chapter will discuss the effects of hippocampal damage on memory in humans based on findings from behavioral and neuroimaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes, C. A. (1988). Spatial learning and memory processes: The search for their ­neurobiological mechanisms in the rat. Trends in Neurosciences, 11(4), 163–169. doi:10.1016/0166-2236(88)90143-9.

    Article  PubMed  Google Scholar 

  • Baumann, O., Chan, E., & Mattingley, J. B. (2012). Distinct neural networks underlie encoding of categorical versus coordinate spatial relations during active navigation. NeuroImage, 60(3), 1630–1637. doi:10.1016/j.neuroimage.2012.01.089.

    Article  PubMed  Google Scholar 

  • Brown, M. W., & Aggleton, J. P. (2001). Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature reviews. Neuroscience, 2(1), 51–61. doi:10.1038/35049064.

    Article  PubMed  Google Scholar 

  • Chiba, A. A., Kesner, R. P., & Reynolds, A. M. (1994). Memory for spatial location as a function of temporal lag in rats: Role of hippocampus and medial prefrontal cortex. Behav Neural Biol, 61(2), 123–131. doi:10.1016/S0163-1047(05)80065-2.

    Article  PubMed  Google Scholar 

  • Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 2157–2162. doi:10.1073/pnas.0337195100.

    Google Scholar 

  • Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature reviews. Neuroscience, 1(1), 41–50. doi:10.1038/35036213.

    Article  PubMed  Google Scholar 

  • Gallistel, C. R. (1990). Representations in animal cognition: An introduction. Cognition, 37(1–2), 1–22. doi:10.1016/0010-0277(90)90016-D.

    Article  PubMed  Google Scholar 

  • Gilbert, P. E., & Kesner, R. P. (2002). Role of the rodent hippocampus in paired-associate learning involving associations between a stimulus and a spatial location. Behavioral neuroscience, 116(1), 63–71. doi:10.1037/0735-7044.116.1.63.

    Article  PubMed  Google Scholar 

  • Gilbert, P. E., & Kesner, R. P. (2004). Memory for objects and their locations: The role of the hippocampus in retention of object-place associations. Neurobiology of learning and memory, 81(1), 39–45. doi:10.1016/S1074-7427(03)00069-8.

    Article  PubMed  Google Scholar 

  • Gilbert, P. E., Kesner, R. P., & Lee, I. (2001). Dissociating hippocampal subregions: Double dissociation between dentate gyrus and CA1. Hippocampus, 11(6), 626–636. doi:10.1002/hipo.1077.

    Article  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J. (2009). Human spatial memory: Features and processes. (Doctoral ­Dissertation). Retrieved from ProQuest Dissertations and Theses. (3353728)

    Google Scholar 

  • Goodrich-Hunsaker, N. J., & Hopkins, R. O. (2010). Spatial memory deficits in a virtual radial arm maze in amnesic participants with hippocampal damage. Behavioral neuroscience, 124(3), 405–413. doi:10.1037/a0019193.

    Article  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J., Hunsaker, M. R., & Kesner, R. P. (2005). Dissociating the role of the parietal cortex and dorsal hippocampus for spatial information processing. Behavioral ­neuroscience, 119(5), 1307–1315. doi:10.1037/0735-7044.119.5.1307.

    Article  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J., Hunsaker, M. R., & Kesner, R. P. (2008). The interactions and dissociations of the dorsal hippocampus subregions: How the dentate gyrus, CA3, and CA1 process ­spatial information. Behavioral neuroscience, 122(1), 16–26. doi:10.1037/0735-7044.122.1.16.

    Article  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J., Gilbert, P. E., & Hopkins, R. O. (2009). The role of the human hippocampus in odor-place associative memory. Chemical senses, 34(6), 513–521. doi:10.1093/chemse/bjp026.

    Article  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J., Livingstone, S. A., Skelton, R. W., & Hopkins, R. O. (2010). Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus, 20(4), 481–491. doi:10.1002/hipo.20651.

    PubMed  Google Scholar 

  • Hopkins, R. O., Kesner, R. P., & Goldstein, M. (1995b). Item and order recognition memory in subjects with hypoxic brain injury. Brain and cognition, 27(2), 180–201. doi:10.1006/brcg.1995.1016.

    Article  PubMed  Google Scholar 

  • Hopkins, R. O., Kesner, R. P., & Goldstein, M. (1995b). Memory for novel and familiar spatial and linguistic temporal distance information in hypoxic subjects. Journal of the International Neuropsychological Society: JINS, 1(5), 454–468. doi:10.1017/S1355617700000552.

    Article  PubMed  Google Scholar 

  • Jackson, P. A., Kesner, R. P., & Amann, K. (1998). Memory for duration: Role of hippocampus and medial prefrontal cortex. Neurobiology of learning and memory, 70(3), 328–348. doi:10.1006/nlme.1998.3859.

    Article  PubMed  Google Scholar 

  • Jarrard, L. E. (1991). On the neural bases of the spatial mapping system: Hippocampus vs. ­hippocampal formation. Hippocampus, 1(3), 236–239. doi:10.1002/hipo.450010304.

    Article  PubMed  Google Scholar 

  • Jarrard, L. E. (1993). On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol, 60(1), 9–26. doi:10.1016/0163-1047(93)90664-4.

    Article  PubMed  Google Scholar 

  • Johnson, D. L., & Kesner, R. P. (1997). Comparison of temporal order memory in early and middle stage Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology: Official Journal of The International Neuropsychological Society, 19(1), 83–100. doi:10.1080/01688639708403839.

    Article  Google Scholar 

  • Kesner, R. P., & Hopkins, R. O. (2001). Short-term memory for duration and distance in humans: Role of the hippocampus. Neuropsychology, 15(1), 58–68. doi:10.1037/0894-4105.15.1.58.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Hopkins, R. O. (2006). Mnemonic functions of the hippocampus: A comparison between animals and humans. Biological Psychology, 73(1), 3–18. doi:10.1016/j.biopsycho.2006.01.004.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Adelstein, T., & Crutcher, K. A. (1987). Rats with nucleus basalis magnocellularis lesions mimic mnemonic symptomatology observed in patients with dementia of the Alzheimer’s type. Behavioral neuroscience, 101(4), 451–456. doi:10.1037/0735-7044.101.4.451.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Adelstein, T. B., & Crutcher, K. A. (1989). Equivalent spatial location memory deficits in rats with medial septum or hippocampal formation lesions and patients with dementia of the Alzheimer’s type. Brain and cognition, 9(2), 289–300. doi:10.1016/0278-2626(89)90038-9.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Gilbert, P. E., & Wallenstein, G. V. (2000). Testing neural network models of memory with behavioral experiments. Current opinion in neurobiology, 10(2), 260–265. doi:10.1016/S0959-4388(00)00067-2.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Lee, I., & Gilbert, P. (2004). A behavioral assessment of hippocampal function based on a subregional analysis. Reviews in the neurosciences, 15(5), 333–351.

    Article  PubMed  Google Scholar 

  • Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemispheres: A computational ­approach. Psychological review, 94(2), 148–175. doi:10.1037/0033-295X.94.2.148.

    Article  PubMed  Google Scholar 

  • Lee, I., & Kesner, R. P. (2003). Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. The Journal of Neuroscience: The Official Journal of The Society for Neuroscience, 23(4), 1517–1523..

    Google Scholar 

  • Madsen, J., & Kesner, R. P. (1995). The temporal-distance effect in subjects with dementia of the Alzheimer type. Alzheimer Disease and Associated Disorders, 9(2), 94–100. doi:10.1097/00002093-199509020-00006.

    Article  PubMed  Google Scholar 

  • Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 262(841), 23–81. doi:10.1098/rstb.1971.0078.

    Article  PubMed  Google Scholar 

  • Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683. doi:10.1038/297681a0.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175. doi:10.1016/0006-8993(71)90358-1.

    Article  PubMed  Google Scholar 

  • O’Reilly, R. C., & Rudy, J. W. (2000). Computational principles of learning in the neocortex and hippocampus. Hippocampus, 10(4), 389–397. doi:10.1002/1098-1063(2000)10:4<389::AID-HIPO5>3.0.CO;2-P.

    Article  PubMed  Google Scholar 

  • O’Reilly, R. C., & Rudy, J. W. (2001). Conjunctive representations in learning and memory: Principles of cortical and hippocampal function. Psychological review, 108(2), 311–345. doi:10.1037/0033-295X.108.2.311.

    Article  PubMed  Google Scholar 

  • O’Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketz, N. (2011). Complementary learning systems. Cognitive Science. doi:10.1111/j.1551-6709.2011.01214.x.

    Google Scholar 

  • Olton, D. S., & Samuelson, R. J. (1976). Remembrance of places passed: Spatial memory in rats. Journal of Experimental Psychology: Animal Behavior Processes, 2(2), 97–116. doi:10.1037/0097-7403.2.2.97.

    Google Scholar 

  • Poucet, B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological review, 100(2), 163–182. doi:10.1037/0033-295X.100.2.163.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and ­empirical tests of the theory. Progress in neurobiology, 79(1), 1–48. doi:10.1016/j.pneurobio.2006.04.005.

    Article  PubMed  Google Scholar 

  • Sutherland, R. J. (2010). Spatial memory: A Rosetta stone for rat and human hippocampal ­discourse: Theoretical comment on Goodrich-Hunsaker and Hopkins (2010). Behavioral ­neuroscience, 124(3), 434–436. doi:10.1037/a0019614.

    Article  PubMed  Google Scholar 

  • Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review, 55(4), 189–208. doi:10.1037/h0061626.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi J. Goodrich-Hunsaker PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goodrich-Hunsaker, N., Hopkins, R. (2016). A Lifetime of Memories: Raymond Kesner’s Contributions of the Attribute Model in Understanding Amnesia. In: Jackson, P., Chiba, A., Berman, R., Ragozzino, M. (eds) The Neurobiological Basis of Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-15759-7_6

Download citation

Publish with us

Policies and ethics