Skip to main content

Altered Neural Synchronies Underlying Cognitive Deficits in a Transgenic Mouse Model of Huntington’s Disease

  • Chapter
  • First Online:
The Neurobiological Basis of Memory

Abstract

Huntington’s disease (HD) is an inherited and progressive neurodegenerative disease associated with the pathology of basal ganglia mediating memory for motor response and attributes. Hallmark chorea and motor disturbances are often preceded by cognitive and psychiatric symptoms associated with neuronal dysfunction, rather than cell death, of the vulnerable neural circuits. The exact nature of the neural functions altered in the disease, in particular, the information coding process mediating cognitive and behavioral disturbances, is unknown.

A few recent studies have attempted to elucidate this issue by performing electrophysiological recordings of single-unit and population neural activity in awake and behaving transgenic mice used to model HD. These investigations revealed dramatic and unique alterations in electrophysiological activity in basal ganglia circuitry over different brain activity states, i.e., task acquisition, exploration of environment, and sleep. These alterations took the form of a reduced recruitment of striatal projection neurons during behaviors as well as aberrant oscillatory activities in a wide range of frequencies in the cortico-striatal circuit. The aberrant rhythmic activities in θ, β, and γ frequencies were differently expressed according to brain activation levels and vigilance states. These neural functional modifications may collectively contribute to the cognitive and behavioral abnormities observed in HD transgenic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andre, V. M., Cepeda, C., & Levine, M. S. (2010). Dopamine and glutamate in Huntington’s disease: A balancing act. CNS Neuroscience & Therapeutics, 16(3), 163–178.

    Article  Google Scholar 

  • Andre, V. M., Fisher, Y. E., & Levine, M. S. (2011a). Altered balance of activity in the striatal direct and indirect pathways in mouse models of Huntington’s disease. Frontiers in Systems Neuroscience, 5, 46.

    Article  PubMed Central  PubMed  Google Scholar 

  • Andre, V. M., Cepeda, C., Fisher, Y. E., Huynh, M., Bardakjian, N., & Singh, S. (2011b). Differential electrophysiological changes in striatal output neurons in Huntington's disease. The Journal of Neuroscience, 31(4), 1170–1182.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arnulf, I., Nielsen, J., Lohmann, E., Schiefer, J., Wild, E., Jennum, P., Konofal, E., Walker, M., Oudiette, D., Tabrizi, S., Durr, A. (2008). Rapid eye movement sleep disturbances in Huntington disease. Archives of Neurololy, 65(4), 482–488.

    Google Scholar 

  • Barnes, T. D., Kubota, Y., Hu, D., Jin, D. Z., & Graybiel, A. M. (2005). Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature, 437(7062), 1158–1161.

    Article  PubMed  Google Scholar 

  • Bassil, F., Du, Z., Garret, M., Mons, N., & Cho, Y. H. (2012). Altered basal ganglion activity in the R6/1 mice. Society for Neuroscience Abstract.

    Google Scholar 

  • Berke, J. D. (2008). Uncoordinated firing rate changes of striatal fast-spiking interneurons during behavioral task performance. The Journal of Neuroscience, 28(40), 10075–10080.

    Article  PubMed Central  PubMed  Google Scholar 

  • Berke, J. D., Okatan, M., Skurski, J., & Eichenbaum, H. B. (2004). Oscillatory entrainment of striatal neurons in freely moving rats. Neuron, 43(6), 883–896.

    Article  PubMed  Google Scholar 

  • Brooks, S. P., Betteridge, H., Trueman, R. C., Jones, L., & Dunnett, S. B. (2006). Selective extra-dimensional set shifting deficit in a knock-in mouse model of Huntington’s disease. Brain Research Bulletin, 69(4), 452–457.

    Article  PubMed  Google Scholar 

  • Cayzac, S., Delcasso, S., Paz, V., Jeantet, Y., & Cho, Y. H. (2011). Changes in striatal procedural memory coding correlate with learning deficits in a mouse model of Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 108(22), 9280–9285.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cepeda, C., Hurst, R. S., Calvert, C. R., Hernandez-Echeagaray, E., Nguyen, O. K., & Jocoy, E. (2003). Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease. The Journal of Neuroscience, 23(3), 961–969.

    PubMed  Google Scholar 

  • Cepeda, C., Wu, N., Andre, V. M., Cummings, D. M., & Levine, M. S. (2007). The corticostriatal pathway in Huntington’s disease. Progress in Neurobiology, 81(5–6), 253–271.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cha, J. H. (2007). Transcriptional signatures in Huntington’s disease. Progress in Neurobiology, 83(4), 228–248.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cha, J. H., Frey, A. S., Alsdorf, S. A., Kerner, J. A., Kosinski, C. M., & Mangiarini, L. (1999). Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1386), 981–989.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen, J. Y., Wang, E. A., Cepeda, C., & Levine, M. S. (2013). Dopamine imbalance in Huntington’s disease: A mechanism for the lack of behavioral flexibility. Frontiers in Neurosciences, 7, 114.

    Google Scholar 

  • Cho, Y. H., & Jeantet, Y. (2010). Differential involvement of prefrontal cortex, striatum, and hippocampus in DRL performance in mice. Neurobiology of Learning and Memory, 93(1), 85–91.

    Article  PubMed  Google Scholar 

  • Cummings, D. M., Milnerwood, A. J., Dallerac, G. M., Waights, V., Brown, J. Y., & Vatsavayai, S. C. (2006). Aberrant cortical synaptic plasticity and dopaminergic dysfunction in a mouse model of Huntington’s disease. Human Molecular Genetics, 15(19), 2856–2868.

    Article  PubMed  Google Scholar 

  • Cummings, D. M., Milnerwood, A. J., Dallerac, G. M., Vatsavayai, S. C., Hirst, M. C., & Murphy, K. P. (2007). Abnormal cortical synaptic plasticity in a mouse model of Huntington’s disease. Brain Research Bulletin, 72(2/3), 103–107.

    Article  PubMed  Google Scholar 

  • Cybulska-Klosowicz, A., Mazarakis, N. K., Van Dellen, A., Blakemore, C., Hannan, A. J., & Kossut, M. (2004). Impaired learning-dependent cortical plasticity in Huntington’s disease transgenic mice. Neurobiology of Diseases, 17(3), 427–434.

    Article  Google Scholar 

  • DiFiglia, M., Sapp, E., Chase, K., Schwarz, C., Meloni, A., & Young, C. (1995). Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron, 14(5), 1075–1081.

    Article  PubMed  Google Scholar 

  • Dumas, E. M., van den Bogaard, S. J., Middelkoop, H. A., & Roos, R. A. (2013). A review of cognition in Huntington’s disease. Frontiers in Bioscience (Scholar Edition), 5, 1–18.

    Article  Google Scholar 

  • Ermis, U., Krakow, K., Voss, U. (2010). Arousal thresholds during human tonic and phasic REM sleep. Jounal of Sleep Research, 19(3), 400–406.

    Google Scholar 

  • Ferrante, R. J. (2009). Mouse models of Huntington’s disease and methodological considerations for therapeutic trials. Biochimica et Biophysica Acta, 1792(6), 506–520.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480.

    Article  PubMed  Google Scholar 

  • Gage, G. J., Stoetzner, C. R., Wiltschko, A. B., & Berke, J. D. (2010). Selective activation of striatal fast-spiking interneurons during choice execution. Neuron, 67(3), 466–479.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., & Monsma, F. J. Jr. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250(4986), 1429–1432.

    Article  PubMed  Google Scholar 

  • Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265(5180), 1826–1831.

    Article  PubMed  Google Scholar 

  • Grote, H. E., Bull, N. D., Howard, M. L., van Dellen, A., Blakemore, C., & Bartlett, P. F. (2005). Cognitive disorders and neurogenesis deficits in Huntington’s disease mice are rescued by fluoxetine. The European Journal of Neuroscience, 22(8), 2081–2088.

    Article  PubMed  Google Scholar 

  • Gutekunst, C. A., Li, S. H., Yi, H., Mulroy, J. S., Kuemmerle, S., & Jones, R. (1999). Nuclear and neuropil aggregates in Huntington’s disease: Relationship to neuropathology. The Journal of Neuroscience, 19(7), 2522–2534.

    PubMed  Google Scholar 

  • Howes, O., Bose, S., Turkheimer, F., Valli, I., Egerton, A., & Stahl, D. (2011). Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: A PET study. Molecular Psychiatry, 16(9), 885–886.

    Article  PubMed  Google Scholar 

  • Jakel, R. J., & Maragos, W. F. (2000). Neuronal cell death in Huntington’s disease: A potential role for dopamine. Trends in Neurosciences, 23(6), 239–245.

    Article  PubMed  Google Scholar 

  • Jeantet, Y., Cayzac, S., & Cho, Y. H. (2013). Beta oscillation during slow wave sleep and rapid eye movement sleep in the electroencephalogram of a transgenic mouse model of Huntington’s disease. PLoS One, 8(11), e79509.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V., & Graybiel, A. M. (1999). Building neural representations of habits. Science, 286(5445), 1745–1749.

    Article  PubMed  Google Scholar 

  • Josiassen, R. C., Curry, L. M., & Mancall, E. L. (1983). Development of neuropsychological deficits in Huntington’s disease. Archives of Neurology, 40(13), 791–796.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Rogers, J. (2004). An analysis of independence and interactions of brain substrates that subserve multiple attributes, memory systems, and underlying processes. Neurobiology of Learning and Memory, 82(3), 199–215.

    Article  PubMed  Google Scholar 

  • Lawrence, A. D., Sahakian, B. J., Hodges, J. R., Rosser, A. E., Lange, K. W., & Robbins, T. W. (1996). Executive and mnemonic functions in early Huntington’s disease. Brain, 119(Pt 5), 1633–1645.

    Article  PubMed  Google Scholar 

  • Lawrence, A. D., Watkins, L. H., Sahakian, B. J., Hodges, J. R., & Robbins, T. W. (2000). Visual object and visuospatial cognition in Huntington’s disease: Implications for information processing in corticostriatal circuits. Brain, 123(Pt 7), 1349–1364.

    Article  PubMed  Google Scholar 

  • Le Moine, C., & Bloch, B. (1995). D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. The Journal of Comparative Neurology, 355(3), 418–426.

    Article  PubMed  Google Scholar 

  • Lebreton, F., Cayzac, S., Pietropaolo, S., Jeantet, Y., Cho, Y. H. (2015). Sleep physiology alterations precede plethoric phenotypic changes in R6/1 Huntington’s disease mice, Plos One, i0(5), e0126972.

    Google Scholar 

  • Lemiere, J., Decruyenaere, M., Evers-Kiebooms, G., Vandenbussche, E., & Dom, R. (2004). Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation—a longitudinal follow-up study. Journal of Neurology, 251(8), 935–942.

    Article  PubMed  Google Scholar 

  • Leventhal, L., Sortwell, C. E., Hanbury, R., Collier, T. J., Kordower, J. H., & Palfi, S. (2000). Cyclosporin A protects striatal neurons in vitro and in vivo from 3-nitropropionic acid toxicity. The Journal of Comparative Neurology, 425(4), 471–478.

    Article  PubMed  Google Scholar 

  • Lione, L. A., Carter, R. J., Hunt, M. J., Bates, G. P., Morton, A. J., & Dunnett, S. B. (1999). Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. The Journal of Neuroscience, 19(23), 10428–10437.

    PubMed  Google Scholar 

  • Mallet, N., Le Moine, C., Charpier, S., & Gonon, F. (2005). Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. The Journal of Neuroscience, 25(15), 3857–3869.

    Article  PubMed  Google Scholar 

  • Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., & Hetherington, C. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3), 493–506.

    Article  PubMed  Google Scholar 

  • Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends in Cognitive Sciences, 11(10), 442–450.

    Article  PubMed  Google Scholar 

  • Matamales, M., Bertran-Gonzalez, J., Salomon, L., Degos, B., Deniau, J. M., & Valjent, E. (2009). Striatal medium-sized spiny neurons: Identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One, 4(3), e4770.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morton, A. J., Wood, N. I., Hastings, M. H., Hurelbrink, C., Barker, R. A., & Maywood, E. S. (2005). Disintegration of the sleep-wake cycle and circadian timing in Huntington’s disease. The Journal of Neuroscience, 25(1), 157–163.

    Article  PubMed  Google Scholar 

  • Naver, B., Stub, C., Moller, M., Fenger, K., Hansen, A. K., & Hasholt, L. (2003). Molecular and behavioral analysis of the R6/1 Huntington’s disease transgenic mouse. Neuroscience, 122(4), 1049–1057.

    Article  PubMed  Google Scholar 

  • Nicniocaill, B., Haraldsson, B., Hansson, O., O’Connor, W. T., & Brundin, P. (2001). Altered striatal amino acid neurotransmitter release monitored using microdialysis in R6/1 Huntington transgenic mice. The European Journal of Neuroscience, 13(1), 206–210.

    Article  PubMed  Google Scholar 

  • Nithianantharajah, J., Barkus, C., Murphy, M., & Hannan, A. J. (2008). Gene-environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington's disease transgenic mice. Neurobiology of Diseases, 29(3), 490–504.

    Article  Google Scholar 

  • Pang, T. Y., Du, X., Zajac, M. S., Howard, M. L., & Hannan, A. J. (2009). Altered serotonin receptor expression is associated with depression-related behavior in the R6/1 transgenic mouse model of Huntington’s disease. Human Molecular Genetics, 18(4), 753–766.

    Article  PubMed  Google Scholar 

  • Petersen, A., Puschban, Z., Lotharius, J., NicNiocaill, B., Wiekop, P., & O’Connor, W. T. (2002). Evidence for dysfunction of the nigrostriatal pathway in the R6/1 line of transgenic Huntington’s disease mice. Neurobiology of Diseases, 11(1), 134–146.

    Article  Google Scholar 

  • Petersen, A., Gil, J., Maat-Schieman, M. L., Bjorkqvist, M., Tanila, H., Araújo, I. M., Smith, R., Popovic, N., Wierup, N., Norlén, P., Li, J. Y., Roos, R. A., Sundler, F., Mulder, H., Brundin, P. (2005). Orexin loss in Huntington’s disease. Human Molecular Genetics, 14(1), 39–47.

    Google Scholar 

  • Pietropaolo, S., Delage, P., Cayzac, S., Crusio, W. E., & Cho, Y. H. (2011). Sex-dependent changes in social behaviors in motor pre-symptomatic R6/1 mice. PLoS One, 6(5), e19965.

    Article  PubMed Central  PubMed  Google Scholar 

  • Reiner, A., Albin, R. L., Anderson, K. D., D’Amato, C. J., Penney, J. B., & Young, A. B. (1988). Differential loss of striatal projection neurons in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 85(15), 5733–5737.

    Google Scholar 

  • Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations? Neuron, 24(1), 49–65, 111–125.

    Article  PubMed  Google Scholar 

  • Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195–231.

    Article  PubMed  Google Scholar 

  • Stalnaker, T. A., Calhoon, G. G., Ogawa, M., Roesch, M. R., & Schoenbaum, G. (2010). Neural correlates of stimulus-response and response-outcome associations in dorsolateral versus dorsomedial striatum. Frontiers in Integrative Neuroscience, 4, 12.

    Article  PubMed Central  PubMed  Google Scholar 

  • Starr, P. A., Kang, G. A., Heath, S., Shimamoto, S., & Turner, R. S. (2008). Pallidal neuronal discharge in Huntington’s disease: Support for selective loss of striatal cells originating the indirect pathway. Experimental Neurology, 211(1), 227–233.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tang, J. K., Moro, E., Lozano, A. M., Lang, A. E., Hutchison, W. D., & Mahant, N. (2005). Firing rates of pallidal neurons are similar in Huntington’s and Parkinson’s disease patients. Experimental Brain Research, 166(2), 230–236.

    Article  PubMed  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s disease collaborative research group. Cell, 72(6), 971–983.

    Google Scholar 

  • Vonsattel, J. P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E. D., & Richardson, E. P. Jr. (1985). Neuropathological classification of Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 44(6), 559–577.

    Article  PubMed  Google Scholar 

  • Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends Neuroscience, 27(8), 468–474.

    Article  Google Scholar 

  • Walker, M. P., & Stickgold, R. (2004). Sleep-dependent learning and memory consolidation. Neuron, 44(1), 121–133.

    Article  PubMed  Google Scholar 

  • Wiegand, M., Moller, A. A., Lauer, C. J., Stolz, S., Schreiber, W., Dose, M., Krieg, J. C. (1991). Nocturnal sleep in Huntington’s disease. Journal of Neurology, 238(4), 203–208.

    Google Scholar 

  • Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews. Neuroscience, 7(6), 464–476.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The works summarized here were supported by the Hereditary Disease Foundation, the University of Bordeaux 1, the HD Society of America, and the Agence Nationale de la Recherche (ANR-08-MNPS-019-01).

The authors wish to thank Vietminh Paz, Sebastien Delcasso, Sebastien Cayzac, Susanna Pietropaolo, Pauline Delage, Fanny Lebreton, Michele Pignatelli, Xavier Leinekugel, Fares Bassil, Nicole Mons, Huowei Du, Maurice Garret, Magali Cabanas for their fruitful collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon H. Cho PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cho, Y., Jeantet, Y. (2016). Altered Neural Synchronies Underlying Cognitive Deficits in a Transgenic Mouse Model of Huntington’s Disease. In: Jackson, P., Chiba, A., Berman, R., Ragozzino, M. (eds) The Neurobiological Basis of Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-15759-7_14

Download citation

Publish with us

Policies and ethics