Skip to main content

Multi-Population Genetic Programming with Data Migration for Symbolic Regression

  • Chapter
  • First Online:
Computational Intelligence and Efficiency in Engineering Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 595))

Abstract

In this contribution we study the effects of multi-population genetic programming for symbolic regression problems. In addition to the parallel evolution of several subpopulations according to an island model with unidirectional ring migration, the data partitions, on which the individuals are evolved, differ for every island and are adapted during algorithm execution. These modifications are intended to increase the generalization capabilities of the solutions and to maintain the genetic diversity. The effects of multiple populations as well as the used data migration strategy are compared to standard genetic programming algorithms on several symbolic regression benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://dev.heuristiclab.com.

References

  1. Affenzeller, M., Wagner, S.: Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms. Springer Computer Series, pp. 218–221. Springer, New York (2005)

    Chapter  Google Scholar 

  2. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et systems repartis 10(2), 141–171 (1998)

    Google Scholar 

  3. Fernández, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation genetic programming. Genet. Program. Evol. Mach. 4(1), 21–51 (2003)

    Article  MATH  Google Scholar 

  4. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning in genetic programming. Parallel Problem Solving from Nature-PPSN III, pp. 312–321. Springer, New York (1994)

    Chapter  Google Scholar 

  5. Goncalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random sampling technique for overfitting control in genetic programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) Proceedings of the 15th European Conference on Genetic Programming, EuroGP 2012, vol. 7244 of LNCS, pp. 218–229. Springer, Malaga, Spain, pp. 11–13 April 2012

    Google Scholar 

  6. Harper, R.: Spatial co-evolution in age layered planes (SCALP). IEEE Congress on Evolutionary Computation (CEC 2010). IEEE Press, Barcelona, Spain, pp. 18–23 July 2010

    Google Scholar 

  7. Keijzer, M.: Scaled symbolic regression. Genet. Program. Evol. Mach. 5(3), 259–269 (2004)

    Article  Google Scholar 

  8. Kommenda, M., Kronberger, G., Winkler, S., Affenzeller, M., Wagner. S.: Effects of constant optimization by nonlinear least squares minimization in symbolic regression. In: Proceeding of the Fifteenth Annual Conference Companion on Genetic and Evolutionary Computation Conference Companion, pp. 1121–1128. ACM (2013)

    Google Scholar 

  9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  10. Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Comput. 4(3), 274–283 (2000)

    Article  Google Scholar 

  11. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu.com (2008)

    Google Scholar 

  12. Salhi, A., Glaser, H., De Roure, D.: Parallel implementation of a genetic-programming based tool for symbolic regression. Inf. Process. Lett. 66(6), 299–307 (1998)

    Article  Google Scholar 

  13. Schmidt, M.D., Lipson, H.: Co-evolving fitness predictors for accelerating and reducing evaluations. In: Riolo, R.L., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice IV, vol. 5 of Genetic and Evolutionary Computation, chapter 17. Springer, Ann Arbor, pp. 11–13 May 2006

    Google Scholar 

  14. Smits, G., Vladislavleva, E., Yen, G.G., Lucas, S.M., Fogel, G., Kendall, G., Salomon, R., Zhang, B.-T., Coello, C.A.C.: Ordinal pareto genetic programming. In: Proceedings of the 2006 IEEE Congress on Evolutionary, pp. 3114–3120. IEEE Press (2006)

    Google Scholar 

  15. Stijven, S., Minnebo, W., Vladislavleva, K.: Separating the wheat from the chaff: on feature selection and feature importance in regression random forests and symbolic regression. In: Gustafson, S., Vladislavleva, E. (eds.) 3rd symbolic Regression and Modeling Workshop for GECCO 2011, pp. 623–630. ACM, Dublin, Ireland, 12–16 July 2011

    Google Scholar 

  16. Tanese, R.: Distributed genetic algorithms. In: Proceedings of the Third International Conference on Genetic Algorithms, pp. 434–439. Morgan Kaufmann Publishers Inc., San Francisco (1989)

    Google Scholar 

  17. Tomassini, M., Vanneschi, L., Fernández, F., Galeano, G.: A study of diversity in multipopulation genetic programming. Artificial Evolution, pp. 243–255. Springer, New York (2004)

    Chapter  Google Scholar 

  18. Uy, N.Q., Hoai, N.X., O’Neill, M., Mckay, R.I., Galván-López, E.: Semantically-based crossover in genetic programming: Application to real-valued symbolic regression. Genet. Program. Evol. Mach. 12(2), 91–119 (2011)

    Article  Google Scholar 

  19. Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affenzeller, M.: Architecture and design of the heuristiclab optimization environment. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. Topics in Intelligent Engineering and Informatics, vol. 6, pp. 197–261. Springer, New York (2014)

    Chapter  Google Scholar 

  20. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaskowski, W., O’Reilly, U.-M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genet. Program Evol. Mach. 14(1), 3–29 (2013)

    Article  Google Scholar 

  21. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on separability, population size and convergence. J. Comput. Inf. Technol. 7, 33–48 (1999)

    Google Scholar 

  22. Whitley, D., Starkweather, T.: Genitor ii: a distributed genetic algorithm. J. Exp. Theor. Artif. Intell. 2(3), 189–214 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kommenda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kommenda, M., Affenzeller, M., Kronberger, G., Burlacu, B., Winkler, S. (2015). Multi-Population Genetic Programming with Data Migration for Symbolic Regression. In: Borowik, G., Chaczko, Z., Jacak, W., Łuba, T. (eds) Computational Intelligence and Efficiency in Engineering Systems. Studies in Computational Intelligence, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-319-15720-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15720-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15719-1

  • Online ISBN: 978-3-319-15720-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics