Skip to main content

Rings in Network Glasses: The \(\mathrm{B_2O_3}\) Case

  • Chapter
  • First Online:
Molecular Dynamics Simulations of Disordered Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 215))

Abstract

There has been a considerable debate, in particular since the emergence of atomistic simulations , about the structure of glassy \(\mathrm{B_2O_3}\) , a prototypical network-forming system based on trigonal units. Some intermediate-range order in the form of threefold rings, present in the glass but not in the crystalline phases, has remained so far very difficult to reproduce in atomistic simulations. After a brief summary of the evidences accumulated regarding the boroxol rings , a review of the numerical studies of liquid and glassy \(\mathrm{B_2O_3}\) is provided. The reasons for the failure of the quench-from-the-melt techniques are stressed and a methodology, based on first-principles calculations of experimental observables (diffraction, NMR, Raman, IR, heat capacity) from various glassy models is devised to provide incontrovertible answers to the debate. This allows assessing not only the content of boroxol rings but also the sensitivity of each observable to this quantity. The presence of threefold rings in the glass is then showed to have ramifications for the understanding of the crystalline and liquid phases. This includes the prediction of yet unknown \(\mathrm{B_2O_3}\) polymorphs structurally close to the glass, the understanding of the so-called crystallisation anomaly and the evidencing of structural transitions in the liquid . Finally, the discussion is extended to parent systems such as \(\mathrm{B_2S_3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Being related to a vibration of the oxygen atoms in the rings, the peak area is proportional to \(f_O\), which is directly related to \(f\), the number of boron atoms in the rings, by \(f = 1.5 f_O\).

  2. 2.

    The incorrect 32 % value quoted in [113] actually corresponds to \({f_\mathrm{at}}\) in [69] and thus to \({f}\) = 40 %.

  3. 3.

    Another source of errors in DFT-based calculations comes from the exchange-correlation functional used which is an approximation of the unknown exact one. Gradient-generalised approximation (GGA) based functionals, such as PBE [133] used here, tend to overestimate the equilibrium volume and thus lead to positive residual pressures in simulations at the experimental density. This problem is significantly reduced in some recently proposed functionals by the incorporation of van der Waals contributions. However, no systematic nor significant variation of \(\langle f \rangle \) (beyond the statistical error bars, \(\pm \)7 %) were observed in the liquid phase using the PBE-D2 [138] functional.

  4. 4.

    Although the liquid and glass densities are not identical, it may be a good enough approximation at this point.

  5. 5.

    As an alternative to the high-pressure synthesis, crystalline \(\mathrm{B_2O_3}\)-I can also be prepared by the stepwise dehydration of orthoboric acid (\(\mathrm{H_3BO_3}\))[164] or by seeding a melt with borophosphate [165].

  6. 6.

    As compared to [166], the calculations were repeated with tighter (more accurate) pseudo-potentials and a larger plane-wave basis-set cutoff of 784 eV. This resulted in some very small differences in the results shown Fig. 14.23.

  7. 7.

    If there are no relaxations at all in the triangle-boroxol substitution, that is for exactly homothetical \(3D\)-topologies, one expects the density ratio to be \(\frac{3}{2^3}=0.375\). This is close to the value obtained for instance in the T1 to T1-\(b\) case (0.35). However, the density ratio can be much higher because of structural relaxations, in particular in the directions orthogonal to the boroxol rings plane. For a topology with a strong lamellar character, the triangle-boroxol substitution will double the intra-layers lengths while keeping unchanged the inter-layer distance, resulting in this case in a density ratio of \(\frac{3}{2^2}=0.75\). This is indeed very close to the value obtained in the T0 to T0-\(b\) case (0.76). There are a few cases for which the density is unchanged (as in the T4 to T4-\(b\) case); these correspond to initially porous geometries which contain large rings and for which a more efficient packing in the final relaxed structure was achieved by folding the largest rings.

References

  1. H.E. Fischer, A.C. Barnes, P.S. Salmon, Rep. Prog. Phys. 69, 233 (2006)

    Google Scholar 

  2. A. Filipponi, J. Phys.: Condens. Matter 13, R23 (2001)

    Google Scholar 

  3. S.O. Hruszkewycz et al., Phys. Rev. Lett. 109, 185502 (2012)

    Google Scholar 

  4. P. Wochner et al., Proc. Natl. Acad. Sci. USA 106, 11511 (2009)

    Google Scholar 

  5. M. Altarelli, R.P. Kurta, I.A. Vartanyants, Phys. Rev. B 82, 104207 (2010)

    Google Scholar 

  6. M.M.J. Treacy, K.B. Borisenko, Science 335, 950 (2012)

    Google Scholar 

  7. J.M. Gibson, M.M.J. Treacy, T. Sun, N.J. Zaluzec, Phys. Rev. Lett. 105, 125504 (2010)

    Google Scholar 

  8. P. Wochner, M. Castro-Colin, S.N. Bogle, V.N. Bugaev, Int. J. Mater. Res. 102, 874 (2011)

    Google Scholar 

  9. A. Filipponi et al., Phys. Rev. B 40, 9636 (1989)

    Google Scholar 

  10. G. Ferlat et al., Phys. Rev. B 73, 214207 (2006)

    Google Scholar 

  11. T. Charpentier, M.C. Menziani, A. Pedone, RSC Adv. 3, 10550 (2013)

    Google Scholar 

  12. J.P. Rino et al., Phys. Rev. B 47, 3053 (1993)

    Google Scholar 

  13. K. Vollmayr, W. Kob, K. Binder, Phys. Rev. B 54, 15808 (1996)

    Google Scholar 

  14. L.W. Hobbs, C.E. Jerusum, V. Pulim, B. Berger, Phil. Mag. A 78, 679 (1998)

    Google Scholar 

  15. R.M. Van Ginhoven, H. Jónsson, L.R. Corrales, Phys. Rev. B 71, 024208 (2005)

    Google Scholar 

  16. P.Y. Huang et al., Science 342, 224 (2013)

    Google Scholar 

  17. S.K. Sharma, J.F. Mammone, M.F. Nicol, Nature 292, 140 (1981)

    Google Scholar 

  18. F.L. Galeener, R.A. Barrio, E. Martinez, R.J. Elliott, Phys. Rev. Lett. 53, 2429 (1984)

    Google Scholar 

  19. A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 5145 (1998)

    Google Scholar 

  20. P. Umari, X. Gonze, A. Pasquarello, Phys. Rev. Lett. 90, 027401 (2003)

    Google Scholar 

  21. M. Lazzeri, F. Mauri, Phys. Rev. Lett. 90, 036401 (2003)

    Google Scholar 

  22. F.L. Galeener, Solid State Commun. 44, 1037 (1982)

    Google Scholar 

  23. D.S. Franzblau, Phys. Rev. B 44, 4925 (1991)

    Google Scholar 

  24. K. Goetzke, H.J. Klein, J. Non-Cryst, Solids 127, 215 (1991)

    Google Scholar 

  25. X. Yuan, A.N. Cormack, Comput. Mater. Sci. 24, 343 (2002)

    Google Scholar 

  26. S. Le Roux, P. Jund, Comput. Mater. Sci. 49, 70 (2010)

    Google Scholar 

  27. W.H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932)

    Google Scholar 

  28. A. C. Wright, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 51, 1 (2010)

    Google Scholar 

  29. S.R. Elliott, J. Non-Cryst, Solids 97–98, 159 (1987)

    Google Scholar 

  30. J. Krogh-Moe, J. Non-Cryst, Solids 1, 269 (1969)

    Google Scholar 

  31. P.A.V. Johnson, A.C. Wright, R.N. Sinclair, J. Non-Cryst, Solids 87, 5071 (1982)

    Google Scholar 

  32. A.C. Hannon et al., J. Non-Cryst. Solids 177, 299 (1994)

    Google Scholar 

  33. B.E. Warren, H. Krutter, O. Morningstar, J. Am. Ceram. Soc. 19, 202 (1936)

    Google Scholar 

  34. J. Goubeau, H. Keller, Z. Anorg, Allg. Chem. 272, 303 (1953)

    Google Scholar 

  35. C.F. Jr, Windisch, W. M. Jr Risen. J. Non-Cryst. Solids 48, 307 (1982)

    Google Scholar 

  36. R.A. Barrio, F.L. Castillo-Alvarado, F.L. Galeener, Phys. Rev. B 44, 7313 (1991)

    Google Scholar 

  37. P. Umari, A. Pasquarello, Phys. Rev. Lett. 95, 137401 (2005)

    Google Scholar 

  38. G. Ferlat et al., Phys. Rev. Lett. 101, 065504 (2008)

    Google Scholar 

  39. G.E.J. Jellison, L.W. Panek, P.J. Bray, G.B.J. Rouse, J. Chem. Phys. 66, 802 (1977)

    Google Scholar 

  40. S.J. Gravina, P.J. Bray, J. Magn. Res. 89, 515 (1990)

    Google Scholar 

  41. R.E. Youngman, J.W. Zwanziger, J. Non-Cryst, Solids 168, 293 (1994)

    Google Scholar 

  42. R.E. Youngman et al., Science 269, 1416 (1995)

    Google Scholar 

  43. S.-J. Hwang et al., Solid State Nucl. Magn. Res. 8, 109 (1997)

    Google Scholar 

  44. C. Joo, U. Werner-Zwanziger, J.W. Zwanziger, J. Non-Cryst, Solids 261, 282 (2000)

    Google Scholar 

  45. S. Wang, J.F. Stebbins, J. Am. Ceram. Soc. 82, 1519 (1999)

    Google Scholar 

  46. S. Kroeker, P.S. Neuhoff, J.F. Stebbins, J. Non-Cryst, Solids 293–295, 440 (2001)

    Google Scholar 

  47. S. Kroeker, J.F. Stebbins, Inorg. Chem. 40, 6239 (2001)

    Google Scholar 

  48. J.A. Tossell, J. Non-Cryst, Solids 183, 307 (1995)

    Google Scholar 

  49. J.A. Tossell, J. Non-Cryst, Solids 215, 236 (1997)

    Google Scholar 

  50. J.W. Zwanziger, Solid State Nucl. Magn. Res. 27, 5 (2000)

    Google Scholar 

  51. R.L. Mozzi, B.E. Warren, J. Appl. Cryst. 3, 251 (1970)

    Google Scholar 

  52. F.M. Dunlevey, A.C. Cooper, Bull. Am. Ceram. Soc. 51, 374 (1972)

    Google Scholar 

  53. E. Chason, F. Spaepen, J. Appl. Phys. 64, 4435 (1988)

    Google Scholar 

  54. J. Swenson, L. Börjesson, Phys. Rev. B 55, 11138 (1997)

    Google Scholar 

  55. M. Bionducci et al., J. Non-Cryst. Solids 177, 137 (1994)

    Google Scholar 

  56. A.K. Soper, J. Phys.: Condens. Matter 22, 404210 (2010)

    Google Scholar 

  57. S.R. Elliott, Philos. Mag. B 37, 435 (1978)

    Google Scholar 

  58. R.J. Bell, A. Carnevale, Philos. Mag. B 43, 389 (1981)

    Google Scholar 

  59. A. Takada, C.R.A. Catlow, G.D. Price, J. Phys.: Condens. Matter 7, 8659 (1995)

    Google Scholar 

  60. A. Takada, C.R.A. Catlow, G.D. Price, Phys. Chem. Glasses 44, 147 (2003)

    Google Scholar 

  61. L. Huang, J. Kieffer, Phys. Rev. B 74, 224107 (2006)

    Google Scholar 

  62. W. Soppe, C. Van Der Marel, H.W. Den Hartog, J. Non-Cryst, Solids 101, 101 (1988)

    Google Scholar 

  63. J. Swenson, L. Börjesson, Phys. Rev. Lett. 96, 199701 (2006)

    Google Scholar 

  64. A.C. Hannon, A.C. Wright, J.A. Blackman, R.N. Sinclair, J. Non-Cryst, Solids 182, 78 (1995)

    Google Scholar 

  65. R.N. Sinclair et al., Phys. Chem. Glasses 41, 286 (2000)

    Google Scholar 

  66. M. Teter, in Borate Glasses, Crystals and Melts, ed. by A.C. Wright, S.A. Feller, A.C. Hannon (Soc. Glass Technol, Sheffield, 1997), p. 407

    Google Scholar 

  67. G.E. Walrafen, S.R. Samanta, P.N. Krishnan, J. Chem. Phys. 72, 113 (1980)

    Google Scholar 

  68. G.E. Walrafen, M.S. Hokmabadi, P.N. Krishnan, S. Guha, J. Chem. Phys. 79, 3609 (1983)

    Google Scholar 

  69. R. Hassan, E.S. Campbell, J. Chem. Phys. 97, 4326 (1992)

    Google Scholar 

  70. S. Guha, G.E. Walrafen, J. Chem. Phys. 80, 3807 (1984)

    Google Scholar 

  71. M. Grimsditch, A. Polian, A.C. Wright, Phys. Rev. B. 54, 152 (1996)

    Google Scholar 

  72. J. Nicholas, S. Sinogeikin, J. Kieffer, J. Bass, Phys. Rev. Lett. 92, 215701 (2004)

    Google Scholar 

  73. V.V. Brazhkin et al., Phys. Rev. Lett. 105, 115701 (2010)

    Google Scholar 

  74. G. Carini Jr, E. Gilioli, G. Tripodo, C. Vasi, Phys. Rev. B 84, 024207 (2011)

    Google Scholar 

  75. G. Carini Jr et al., Phys. Rev. Lett. 111, 245502 (2013)

    Google Scholar 

  76. S.K. Lee et al., Phys. Rev. Lett. 94, 165507 (2005)

    Google Scholar 

  77. A.C. Wright et al., Phys. Chem. Glasses 41, 296 (2000)

    Google Scholar 

  78. A. Zeidler et al., Phys. Rev. B 90, 024206 (2014)

    Google Scholar 

  79. A. Takada, Phys. Chem. Glasses 45, 156 (2004)

    Google Scholar 

  80. M. Misawa, J. Non-Cryst, Solids 122, 33 (1990)

    Google Scholar 

  81. J.D. Mackenzie, J. Phys. Chem. 63, 1875 (1959)

    Google Scholar 

  82. P.B. Macedo, W. Capps, T.A. Litovitz, J. Chem. Phys. 44, 3357 (1966)

    Google Scholar 

  83. A. Napolitano, P.B. Macedo, E.G. Hawkins, J. Am. Ceram. Soc. 48, 613 (1965)

    Google Scholar 

  84. N.E. Shmidt, Russ. J. Inorg. Chem. 11, 241 (1966)

    Google Scholar 

  85. P.B. Macedo, A. Napolitano, J. Chem. Phys. 49, 1887 (1968)

    Google Scholar 

  86. E.F. Riebling, J. Am. Ceram. Soc. 49, 19 (1966)

    Google Scholar 

  87. L.L. Sperry, J.D. Mackenzie, Phys. Chem. Glasses 9, 91 (1968)

    Google Scholar 

  88. N.S. Srinivasan, J.M. Juneja, S. Seetharaman, Metall. Mater. Trans. A 25, 877 (1994)

    Google Scholar 

  89. P.G. Pittoni, Y.-Y. Chang, S.-Y. Lin, J. Taiwan Inst. Chem. Eng. 48, 613 (1965)

    Google Scholar 

  90. T.F. Soules, J. Chem. Phys. 71, 4570 (1979)

    Google Scholar 

  91. T.F. Soules, J. Chem. Phys. 73, 4032 (1980)

    Google Scholar 

  92. T.F. Soules, A.K. Varshneya, J. Am. Ceram. Soc. 64, 145 (1981)

    Google Scholar 

  93. M. Amini, S.K. Mitra, R.W. Hockney, J. Phys. C 14, 3689 (1981)

    Google Scholar 

  94. Q. Xu, K. Kawamura, T. Yokokawa, J. Non-Cryst, Solids 104, 261 (1988)

    Google Scholar 

  95. W. Soppe, H.W. Den Hartog, J. Non-Cryst, Solids 108, 260 (1989)

    Google Scholar 

  96. W. Soppe, C. Van Der Marel, W.F. van Gunsteren, H.W. Den Hartog, J. Non-Cryst, Solids 103, 201 (1988)

    Google Scholar 

  97. H. Inoue, N. Aoki, I. Yasui, J. Am. Ceram. Soc. 70, 622 (1987)

    Google Scholar 

  98. A.H. Verhoef, H.W. Den Hartog, Radiat. Eff. Defects Solids 119, 493 (1991)

    Google Scholar 

  99. A.H. Verhoef, H.W. Den Hartog, J. Non-Cryst, Solids 146, 267 (1992)

    Google Scholar 

  100. A.H. Verhoef, H.W. Den Hartog, J. Non-Cryst, Solids 180, 102 (1994)

    Google Scholar 

  101. A. Takada, C.R.A. Catlow, G.D. Price, J. Phys.: Condens. Matter 7, 8693 (1995)

    Google Scholar 

  102. R. Fernández-Perea, F.J. Bermejo, E. Enciso, Phys. Rev. B 53, 6215 (1996)

    Google Scholar 

  103. F.J. Bermejo, J. Dawidowski, R. Fernández-Perea, J.L. Martínez, Phys. Rev. B 54, 244 (1996)

    Google Scholar 

  104. R.E. Youngman, J. Kieffer, J.D. Bass, L. Duffrène, J. Non-Cryst, Solids 222, 190 (1997)

    Google Scholar 

  105. L. Cormier, D. Ghaleb, J.-M. Delaye, G. Calas, Phys. Rev. B 61, 14495 (2000)

    Google Scholar 

  106. R. Fernández-Perea, F.J. Bermejo, M.L. Senent, Phys. Rev. B 54, 6039 (1996)

    Google Scholar 

  107. E. Kashchieva, B. Shivachev, Y. Dimitriev, J. Non-Cryst, Solids 351, 1158 (2005)

    Google Scholar 

  108. A. Takada, Eur. J. Glass Sci. Technol. B 47, 493 (2006)

    Google Scholar 

  109. A. Takada et al., Phys. Rev. B 51, 1447 (1995)

    Google Scholar 

  110. G.E. Gurr, P.W. Montgomery, C.D. Knutson, B.T. Gorres, Acta Crystallogr. B26, 906 (1970)

    Google Scholar 

  111. C.T. Prewitt, R.D. Shannon, Acta Crystallogr. B24, 869 (1968)

    Google Scholar 

  112. B. Park, Ph.D. thesis, Alfred University, New-York, 1998

    Google Scholar 

  113. J.K. Maranas, Y. Chen, D.K. Stillinger, F.H. Stillinger, J. Chem. Phys. 115, 6578 (2001)

    Google Scholar 

  114. S.K. Fullerton, J.K. Maranas, J. Chem. Phys. 121, 8562 (2004)

    Google Scholar 

  115. S.K. Fullerton, J.K. Maranas, Nano. Lett. 5, 363 (2005)

    Google Scholar 

  116. A. Baroni et al., in preparation (unpublished)

    Google Scholar 

  117. L. Huang, M. Durandurdu, J. Kieffer, J. Phys. Chem. C 111, 13712 (2007)

    Google Scholar 

  118. L. Huang, J. Nicholas, J. Kieffer, J. Bass, J. Phys.: Condens. Mater. 74, 224107 (2006)

    Google Scholar 

  119. J. Kieffer, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 50, 294 (2009)

    Google Scholar 

  120. V.V. Brazhkin et al., Phys. Rev. Lett. 101, 035702 (2008)

    Google Scholar 

  121. K. Trachenko et al., Phys. Rev. B 78, 172102 (2008)

    Google Scholar 

  122. S. Ohmura, F. Shimojo, Phys. Rev. B. 78, 224206 (2008)

    Google Scholar 

  123. S. Ohmura, F. Shimojo, Phys. Rev. B. 80, 020202 (2009)

    Google Scholar 

  124. S. Ohmura, F. Shimojo, Phys. Rev. B. 81, 014208 (2010)

    Google Scholar 

  125. A.K. Soper, J. Phys.: Condens. Mater. 23, 365402 (2011)

    Google Scholar 

  126. M. Micoulaut, R. Kerner, D.M. Dossantosloff, J. Phys.: Condens. Matter 7, 8035 (1995)

    Google Scholar 

  127. R.A. Barrio, R. Kerner, M. Micoulaut, G.G. Naumis, J. Phys.: Condens. Matter. 9, 9219 (1997)

    Google Scholar 

  128. A. Bouzid, C. Massobrio, J. Chem. Phys. 137, 046101 (2012)

    Google Scholar 

  129. D. Donadio, M. Bernasconi, Phys. Rev. B 71, 073307 (2005)

    Google Scholar 

  130. D. Donadio, P. Raiteri, M. Parrinello, J. Phys. Chem. B 109, 5421 (2005)

    Google Scholar 

  131. P. Kroll, J. Non-Cryst, Solids 351, 1127 (2005)

    Google Scholar 

  132. J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002)

    Google Scholar 

  133. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  134. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Google Scholar 

  135. http://www.cpmd.org

  136. G. Ferlat et al., Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 441 (2006)

    Google Scholar 

  137. E. Lascaris et al., J. Chem. Phys. 140, 224502 (2014)

    Google Scholar 

  138. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Google Scholar 

  139. J. Diefenbacher, P.F. McMillan, J. Phys. Chem. A 105, 7973 (2001)

    Google Scholar 

  140. P.J. Bray, Inorg. Chim. Acta 289, 158 (1999)

    Google Scholar 

  141. S. Wang, J.F. Stebbins, J. Non-Cryst, Solids 231, 286 (1998)

    Google Scholar 

  142. S.K. Lee, C.B. Musgrave, P. Zhao, J.F. Stebbins, J. Phys. Chem. B 105, 12583 (2001)

    Google Scholar 

  143. O.L.G. Alderman et al., Phys. Chem. Chem. Phys. 15, 8506 (2013)

    Google Scholar 

  144. I. Hung et al., J. Magn. Res. 197, 229 (2009)

    Google Scholar 

  145. I. Hung et al., J. Solid State Chem. 182, 2402 (2009)

    Google Scholar 

  146. A. Wong et al., Phys. Chem. Chem. Phys. 11, 7061 (2009)

    Google Scholar 

  147. J.W. Zwanziger, Solid State Nucl. Magn. Reson. 27, 5 (2005)

    Google Scholar 

  148. C.J. Pickard, F. Mauri, Phys. Rev. B 63, 245101 (2001)

    Google Scholar 

  149. T. Charpentier, J. Virlet, Solid State Nucl. Magn. Reson. 12, 227 (1998)

    Google Scholar 

  150. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502, 19 pp (2009)

    Google Scholar 

  151. D. Cabaret, F. Mauri, G.S. Henderson, Phys. Rev. B 75, 184205 (2007)

    Google Scholar 

  152. S.K. Lee et al., Nat. Mater. 4, 851 (2005)

    Google Scholar 

  153. X. Liu, M.E. Fleet, Phys. Chem. Min. 28, 421 (2001)

    Google Scholar 

  154. F.L. Galeener, G. Lucovsky, J.C. Mikkelsen Jr, Phys. Rev. B 22, 3983 (1980)

    Google Scholar 

  155. E.C. Kerr, H.N. Hersh, H.L. Johnston, J. Am. Chem. Soc. 72, 4738 (1950)

    Google Scholar 

  156. P. Richet, D. de Ligny, E.F. Westrum Jr, J. Non-Cryst, Solids 20, 315 (2003)

    Google Scholar 

  157. B. Park, E. Bylaska, L.R. Corrales, Phys. Chem. Glasses 44, 174 (2003)

    Google Scholar 

  158. F.H. Stillinger, T.A. Weber, Phys. Rev. A 25, 978 (1982)

    Google Scholar 

  159. N. Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)

    Google Scholar 

  160. P.M. Piccione et al., J. Phys. Chem. B 104, 10001 (2000)

    Google Scholar 

  161. F.C. Kracek, G.W. Morey, H.E. Merwin, Am. J. Sci. 35A, 143 (1938)

    Google Scholar 

  162. D.R. Ulhmann, J.F. Hays, D. Turnbull, Phys. Chem. Glasses 8, 1 (1967)

    Google Scholar 

  163. M.J. Aziz, E. Nygren, J.F. Hays, D. Turnbull, J. Appl. Phys. 57, 2233 (1985)

    Google Scholar 

  164. L. McCulloch, J. Am. Chem. Soc. 59, 2650 (1937)

    Google Scholar 

  165. D. Kline, P.J. Bray, H.M. Kriz, J. Chem. Phys. 48, 5277 (1968)

    Google Scholar 

  166. G. Ferlat, A.P. Seitsonen, M. Lazzeri, F. Mauri, Nat. Mater. 11, 925 (2012)

    Google Scholar 

  167. B. Winkler, C.J. Pickard, V. Milman, G. Thimm, Chem. Phys. Lett. 337, 36 (2001)

    Google Scholar 

  168. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Google Scholar 

  169. S.J. Clark et al., Z. Kristallogr. 220, 567 (2005)

    Google Scholar 

  170. S.L. Price, Acc. Chem. Res. 42, 117 (2009)

    Google Scholar 

  171. F. Claeyssens, N.L. Allan, N.C. Norman, C.A. Russell, Phys. Rev. B 82, 094119 (2010)

    Google Scholar 

  172. S.-H. Jhi, Y.-K. Kwon, K. Bradley, J.-C.P. Gabriel, Solid State Commun. 129, 769 (2004)

    Google Scholar 

  173. C. Barboiu et al., J. Membr. Sci. 326, 514 (2009)

    Google Scholar 

  174. S.-H. Jhi, Y.-K. Kwon, K. Bradley, J.-C. P. Gabriel, Boron oxide and related compounds for hydrogen storage. US Patent 7479240 B2, 2009

    Google Scholar 

  175. J. Swenson, L. Börjesson, J. Non-Cryst, Solids 223, 223 (1998)

    Google Scholar 

  176. T. Sato, N. Funamori, T. Yagi, Nat. Commun. 2, 345 (2011)

    Google Scholar 

  177. C. Weigel et al., Phys. Rev. Lett. 109, 245504 (2012)

    Google Scholar 

  178. F. Claeyssens, J.N. Hart, N.C. Norman, N.L. Allan, Adv. Funct. Mater. 23, 5887 (2013)

    Google Scholar 

  179. S.S. Cole, N.W. Taylor, J. Am. Ceram. Soc. 18, 55 (1935)

    Google Scholar 

  180. S. Kocakusak et al., Chem. Eng. Proc. 35, 311 (1996)

    Google Scholar 

  181. Q. Yang et al., Physica A 27, 319 (2005)

    Google Scholar 

  182. M. Putkonen, L. Niinistö, Thin Solid Films 514, 145 (2006)

    Google Scholar 

  183. O. Moon, B.-C. Kang, S.-B. Lee, J.-H. Boo, Thin Solid Films 464–465, 164 (2004)

    Google Scholar 

  184. D. Buc et al., Thin Solid Films 515, 8723 (2007)

    Google Scholar 

  185. R. Ma, Y. Bando, Chem. Phys. Lett. 374, 358 (2003)

    Google Scholar 

  186. A. Martyła, B. Olejnik, P. Kirszensztejn, R. Przekop, Int. J. Hydrogen Energy 36, 8358 (2011)

    Google Scholar 

  187. F. Caupin et al., J. Phys.: Condens. Matter. 24, 284110 (2012)

    Google Scholar 

  188. D.T. Limmer, D. Chandler, J. Chem. Phys. 135, 134503 (2011)

    Google Scholar 

  189. J.C. Palmer et al., Nature 510, 385 (2014)

    Google Scholar 

  190. P.H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Nature 360, 324 (1992)

    Google Scholar 

  191. C.A. Angell, Nature 510, 673 (2014)

    Google Scholar 

  192. A.E. Geissberger, F.L. Galeener, in The Structure of Non-Crystalline Materials 1982, ed. by P.H. Gaskell, J.M. Parker, E.A. Davis (Taylor and Francis, London, 1983), p. 381

    Google Scholar 

  193. M. Menetrier et al., Phys. Chem. Glasses 33, 222 (1992)

    Google Scholar 

  194. S.-J. Hwang et al., J. Am. Chem. Soc. 120, 7337 (1998)

    Google Scholar 

  195. M. Royle, J. Cho, S.W. Martin, J. Non-Cryst, Solids 279, 97 (2001)

    Google Scholar 

  196. J. Cho, S.W. Martin, J. Non-Cryst, Solids 182, 248 (1995)

    Google Scholar 

  197. R.N. Sinclair et al., J. Non-Cryst. Solids 293, 383 (2001)

    Google Scholar 

  198. W. Yao, S.W. Martin, V. Petkov, J. Non-Cryst, Solids 351, 1995 (2005)

    Google Scholar 

  199. M. Micoulaut, in Current Problems in Condensed Matter, Theory and Experiment, edited by J. L. Moran-Lopez (Plenum Press, 1998), p. 339

    Google Scholar 

  200. G. Ferlat, M. Micoulaut, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 50, 284 (2009)

    Google Scholar 

  201. H. Diercks, B. Krebs, Angew. Chem. 89, 327 (1977)

    Google Scholar 

  202. S. Balasubramanian, K.J. Rao, J. Phys. Chem. 98, 9216 (1994)

    Google Scholar 

  203. N. Umesaki et al., J. Non-Cryst. Solids 177, 200 (1994)

    Google Scholar 

  204. A.H. Verhoef, H.W. den Hartog, J. Non-Cryst, Solids 182, 235 (1995)

    Google Scholar 

  205. J. Swenson, L. Börjesson, W.S. Howells, Phys. Rev. B 57, 13514 (1998)

    Google Scholar 

  206. A.N. Cormack, B. Park, Phys. Chem. Glasses 41, 272 (2000)

    Google Scholar 

  207. C.-P.E. Varsamis, A. Vegiri, E.I. Kamitsos, Phys. Rev. B 65, 104203 (2002)

    Google Scholar 

  208. A. Vegiri, C.-P.E. Varsamis, E.I. Kamitsos, Phys. Rev. B 80, 184202 (2009)

    Google Scholar 

  209. A. Vegiri, E.I. Kamitsos, Phys. Rev. B 82, 054114 (2010)

    Google Scholar 

  210. M.A. González et al., J. Non-Cryst. Solids 354, 203 (2008)

    Google Scholar 

  211. M.M. Smedskjaer et al., J. Chem. Phys. 133, 154509 (2010)

    Google Scholar 

  212. M.M. Smedskjaer et al., J. Phys. Chem. B 115, 12930 (2011)

    Google Scholar 

  213. T. Ohkubo et al., J. Phys. Chem. B. 117, 5668 (2013)

    Google Scholar 

  214. D.L. Sidebottom, S.E. Schnell, Phys. Rev. B. 87, 054202 (2013)

    Google Scholar 

  215. S. Le Roux et al., J. Phys.: Condens. Matter 23, 035403 (2011)

    Google Scholar 

Download references

Acknowledgments

I would like to thank all the co-workers involved in the [38, 78, 121, 136, 166, 200], in particular Francesco Mauri, Thibault Charpentier, Ari P. Seitsonen, Mathieu Salanne, Axelle Baroni and Matthieu Micoulaut. I also thank Pascal Richet for providing me with the experimental data of [156], François-Xavier Coudert for interesting discussions, Sara and Eva Lacarce for support and patience. Large support from the French supercomputers (GENCI-CINES/IDRIS) has made possible the results presented in this contribution (Grant x2014081875). I also acknowledge support from French state funds (managed by the ANR under reference ANR-11-IDEX-0004-02, cluster of Excellence MATISSE) and support from the HPC resources of The Institute for scientific Computing and Simulation (financed by Region \(\hat{\mathrm{I}}\)le de France and the project Equip@Meso under reference ANR-10-EQPX-29-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Ferlat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferlat, G. (2015). Rings in Network Glasses: The \(\mathrm{B_2O_3}\) Case. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P. (eds) Molecular Dynamics Simulations of Disordered Materials. Springer Series in Materials Science, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-15675-0_14

Download citation

Publish with us

Policies and ethics