Skip to main content

Heterogeneity of Electrical Conductivity in the Oceanic Upper Mantle

  • Chapter
  • First Online:
The Earth's Heterogeneous Mantle

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

We discuss conductivity heterogeneities of the oceanic upper mantle using available experimental data. The activation energy of the polaron conduction in olivine, wadsleyite, and ringwoodite is similar, at 1.4–1.6 eV. The ionic conduction is significant in olivine, but not in wadsleyite and ringwoodite. Its activation energy is much larger than that of the small polaron conduction (7–12 eV). The proton conductions have a smaller activation energy than the small polaron conduction (less than 1 eV) and are negligible at high temperatures in the depleted MORB mantle . The effects of the secondary minerals are negligible. No significant conductivity jump is associated with the olivine–wadsleyite transition. Volatile components greatly increase conductivity of basaltic melt. The anisotropy in both intrinsic and proton conditions in olivine is small. Sheared, partially molten peridotite can show conductivity anisotropy. The high conductivity below mid-oceanic ridges could be caused by partial melting. Conductivity at several locations suggests a melt fraction of the order of 0.1 vol.%, whereas that under the East Pacific Rise at 9°N suggests one of 15 vol.%. Lithosphere has low conductivity, which should be primarily due to its low temperature. However, the conductivity is too high, judging from the temperature structure and intrinsic conduction of olivine. The circulation of water does not provide enough explanation. The high-conductivity layer at the top of the asthenosphere is not a ubiquitous feature of the mantle—it is relatively limited to regions under young plates. The associated conductivity anisotropy suggests its partial melting origin. The conductivity in the mantle transition zone can be explained by the intrinsic conduction of wadsleyite and ringwoodite. Estimations of water content in the transition zone are largely affected by the uncertainty of geophysical modeling. The MT studies do not detect mantle plumes, although the seismic studies show the presence of low-velocity zones. The conductivity anomalies, whose origins are not understood, are observed under the southern Philippine Sea and the broad region north of Hawaii.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angell CA, Smith DL (1982) Test of the entropy basis of the vogel-tammann-fulcher equation—dielectric-relaxation of polyalcohols near tg. J Phys Chem 86(19):3845–3852

    Article  Google Scholar 

  • Baba K (2005) Electrical structure in marine tectonic settings. Surv Geophys 26(6):701–731

    Article  Google Scholar 

  • Baba K, Chave AD, Evans RL, Hirth G, Mackie RL (2006a) Mantle dynamics beneath the East Pacific Rise at 17 degrees S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiment. J Geophys Res-Solid Earth 111(B2). doi:10.1029/2004JB003598

  • Baba K, Tarits P, Chave AD, Evans RL, Hirth G, Mackie RL (2006b) Electrical structure beneath the northern MELT line on the East Pacific Rise at 15° 45′S. Geophys Res Lett 33(22). doi:10.1029/2006gl027528

  • Baba K, Utada H, Goto T, Kasaya T, Shimizu H, Tada N (2010) Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Phys Earth Planet Inter 183(1–2):44–62

    Article  Google Scholar 

  • Caricchi L, Gaillard F, Mecklenburgh J, Trong EL (2011) Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: implications for electrical anisotropy in the oceanic low velocity zone. Earth Planet Sci Lett 302(1–2):81–94. doi:10.1016/j.epsl.2010.11.041

    Article  Google Scholar 

  • Constable S (1993) Conduction by mantle hydrogen. Nature 362(6422):704

    Article  Google Scholar 

  • Constable S (2006) SEO3: a new model of olivine electrical conductivity. Geophys J Int 166(1):435–437

    Article  Google Scholar 

  • Constable S, Duba A (1990) Electrical conductivity of olivine, a dunite, and the mantle. J Geophys Res 95(B5):6967–6978

    Article  Google Scholar 

  • Constable S, Heinson G (2004) Hawaiian hot-spot swell structure from seafloor MT sounding. Tectonophysics 389(1–2):111–124

    Article  Google Scholar 

  • Constable S, Shankland TJ, Duba A (1992) The electrical conductivity of an isotropic olivine mantle. J Geophys Res 97(B3):3397–3404

    Article  Google Scholar 

  • Constable SC, Heinson GS, Anderson G, White A (1997) Seafloor electromagnetic measurements above axial seamount, juan de fuca ridge. J Geomagn Geoelectr 49(11–12):1327–1342

    Article  Google Scholar 

  • Dai L, Karato SI (2009) Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet Sci Lett 287:277–283

    Article  Google Scholar 

  • Dasgupta R, Mallik A, Tsuno K, Withers AC, Hirth G, Hirschmann MM (2013) Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493(7431):211–215. doi:10.1038/nature11731

    Article  Google Scholar 

  • Du Frane WL, Roberts JJ, Toffelmier DA, Tyburczy JA (2005) Anisotropy of electrical conductivity in dry olivine. Geophys Res Lett 32(24):L24315

    Article  Google Scholar 

  • Duba A, Constable S (1993) The electrical conductivity of lherzolite. J Geophys Res Solid Earth 98(B7):11885–11899

    Article  Google Scholar 

  • Evans RL et al (1999) Asymmetric electrical structure in the mantle beneath the East Pacific rise at 17° S. Science 286(5440):752–756 (Artn l24315)

    Article  Google Scholar 

  • Evans RL, Hirth G, Baba K, Forsyth D, Chave A, Mackie R (2005) Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437(7056):249–252

    Article  Google Scholar 

  • Faul UH (1997) Permeability of partially molten upper mantle rocks from experiments and percolation theory. J Geophys Res-Solid Earth 102(B5):10299–10311. doi:10.1029/96jb03460

    Article  Google Scholar 

  • Filloux JH (1977) Ocean-floor magnetotelluric sounding over north-central Pacific. Nature 269:297–301

    Article  Google Scholar 

  • Forsyth DW et al (1998) Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment. Science 280(5367):1215–1218

    Article  Google Scholar 

  • Fuji-ta K, Katsura T, Tainosho Y (2004) Electrical conductivity measurement of granulite under mid- to lower crustal pressure-temperature conditions. Geophys J Int 157:79–86

    Article  Google Scholar 

  • Fuji-ta K, Katsura T, Matsuzaki T, Ichiki M, Kobayashi T (2007) Electrical conductivity measurement of gneiss under mid- to lower crustal P-T conditions. Tectonophysics 434:93–101

    Article  Google Scholar 

  • Fukao Y, Koyama T, Obayashi M, Utada H (2004) Trans-Pacific temperature field in the mantle transition region derived from seismic and electromagnetic tomography. Earth Planet Sci Lett 217(3–4):425–434

    Article  Google Scholar 

  • Gaillard F (2004) Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet Sci Lett 218(1–2):215–228

    Article  Google Scholar 

  • Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322(5906):1363–1365

    Article  Google Scholar 

  • Heinson G, Constable SH (1992) The electrical conductivity of the oceanic upper mantle. Geophys J Int 110(1):159–179

    Article  Google Scholar 

  • Heinson GS, Lilley FEM (1993) An application of thin-sheet electromagnetic modelling to the Tasman Sea. Phys Earth Planet Inter 81(1–4):231–251

    Article  Google Scholar 

  • Heinson GS, White A, Law LK, Hamano Y, Utada H, Yukutake T, Segawa J, Toh H (1993) EMRIDGE: the electromagnetic investigation of the Juan de Fuca Ridge. Mar Geophys Res 15(2):77–100. doi:10.1007/bf01204130

    Article  Google Scholar 

  • Heinson G, Constable S, White A (1996) Seafloor magnetotelluric sounding above axial seamount. Geophys Res Lett 23(17):2275–2278

    Article  Google Scholar 

  • Heinson G, Constable S, White A (2000) Episodic melt transport at mid-ocean ridges inferred from magnetotelluric sounding. Geophys Res Lett 27(15):2317–2320

    Article  Google Scholar 

  • Hirschmann MM (2010) Partial melt in the oceanic low velocity zone. Phys Earth Planet Inter 179(1–2):60–71

    Article  Google Scholar 

  • Huang XG, Xu YS, Karato SI (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746–749

    Article  Google Scholar 

  • Hung SH, Shen Y, Chiao LY (2004) Imaging seismic velocity structure beneath the Iceland hot spot: a finite frequency approach. J Geophys Res-Solid Earth 109(B8), B08305. doi: 10.1029/2003jb002889

  • Isse T et al (2009) Seismic structure of the upper mantle beneath the Philippine Sea from seafloor and land observation: Implications for mantle convection and magma genesis in the Izu-Bonin-Mariana subduction zone. Earth Planet Sci Lett 278(1–2):107–119

    Article  Google Scholar 

  • Jacobsen SD (2006) Effect of water on the equation of state of nominally anhydrous minerals. In: Keppler H, Smith JR (eds) Water in nominally anhydrous minerals. Geochemical Society, Mineralogical Society of America, USA, pp 321–342

    Google Scholar 

  • Jones AG, Evans RL, Eaton DW (2009) Velocity-conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin-Shtrikman extremal bounds. Lithos 109(1–2):131–143. doi:10.1016/j.lithos.2008.10.014

    Article  Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347(6290):272–273

    Article  Google Scholar 

  • Karato S, Dai LD (2009) Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Phys Earth Planet Inter 174:19–21

    Google Scholar 

  • Katsura T, Sato K, Ito E (1998) Electrical conductivity of silicate perovskite at lower-mantle conditions. Nature 395:493–495

    Article  Google Scholar 

  • Katsura T, Yokoshi S, Kawabe K, Shatskiy A, Okube M, Fukui H, Ito E, Nozawa A, Funakoshi K-I (2007) Pressure dependence of electrical conductivity of (Mg, Fe)SiO3 ilmenite. Phys Chem Miner 34:249–255

    Article  Google Scholar 

  • Katsura T, Yoneda A, Yamazaki D, Yoshino T, Ito E (2010) Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter., 183(1–2):212–218. doi:10.1016/j.pepi.2010.07.001

  • Keppler H, Bolfan-Casanova N (2006) Thermodynamics of water solubility and partitioning. In: Keppler H, Smith JR (eds) Water in nominally anhydrous minerals. Geochemical Society, Mineralogical Society of America, USA, pp 193–230

    Google Scholar 

  • Key K, Constable S, Liu LJ, Pommier A (2013) Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495(7442):499–502. doi:10.1038/nature11932

  • Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Zeitschrift Fur Physikalische Chemie-Int J Res Phys Chem Chem Phys 207:147–162

    Google Scholar 

  • Larsen JC (1975) Low-frequency (0.1-6.0 CPD) Electromagnetic study of deep mantle electrical-conductivity beneath Hawaiian-Islands. Geophys J Roy Astron Soc 43(1):17–46

    Article  Google Scholar 

  • Lizarralde D, Chave A, Hirth G, Schultz A (1995) Northeastern pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J Geophys Res-Solid Earth 100(B9):17837–17854

    Article  Google Scholar 

  • Mackwell SJ, Kohlstedt DL (1990) Diffusion of hydrogen in olivine: implications for water in the mantle. J Geophys Res 95(B4):5079–5088

    Article  Google Scholar 

  • Manthilake M, Matsuzaki T, Yoshino T, Yamashita S, Ito E, Katsura T (2009) Electrical conductivity of wadsleyite as a function of temperature and water content. Phys Earth Planet Inter 174(1–4):10–18. doi:10.1016/j.pepi.2008.06.001

    Article  Google Scholar 

  • Matsuno T et al (2010) Upper mantle electrical resistivity structure beneath the central Mariana subduction system. Geochem Geophys Geosyst 11:Q09003

    Google Scholar 

  • Mibe K, Kawamoto T, Matsukage KN, Fei Y, Ono S (2011) Slab melting versus slab dehydration in subduction-zone magmatism. Proc Natl Acad Sci USA 108(20):8177–8182

    Article  Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochem Geophys Geosyst 7(11):Q11007

    Google Scholar 

  • Mosenfelder JL, Deligne NI, Asimow PD, Rossman GR (2006) Hydrogen incorporation in olivine from 2-12 GPa. Am Miner 91(2–3):285–294. doi:10.2138/am.2006.1943

    Article  Google Scholar 

  • Naif S, Key K, Constable S, Evans RL (2013) Melt-rich channel observed at the lithosphereasthenosphere boundary. Nature 495(7441):356–359. doi:10.1038/nature11939

  • Ni HW, Keppler H, Behrens H (2011) Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib Mineral Petrol 162(3):637–650

    Article  Google Scholar 

  • Nichols ARL, Carroll MR, Hoskuldsson A (2002) Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth Planet Sci Lett 202(1):77–87. doi:10.1016/s0012-821x(02)00758-6

    Article  Google Scholar 

  • Nolasco R, Tarits P, Filloux JH, Chave AD (1998) Magnetotelluric imaging of the Society Islands hotspot. J Geophys Res-Solid Earth 103(B12):30287–30309

    Article  Google Scholar 

  • Ohta K, Hirose K, Ichiki M, Shimizu K, Sata N, Ohishi Y (2010) Electrical conductivities of pyrolitic mantle and MORB materials up to the lowermost mantle conditions. Earth Planet Sci Lett 289(3–4):497–502

    Article  Google Scholar 

  • Oldenburg DW (1981) Conductivity structure of oceanic upper mantle beneath the Pacific plate. Geophys J Royal Astron Soc 65:359–394

    Article  Google Scholar 

  • Omura K, Kurita K, Kumazawa M (1989) Experimental study of pressure dependence of electrical conductivity of olivine at high temperatures. Phys Earth Planet Inter 57(3–4):291–303

    Article  Google Scholar 

  • Poe BT, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter 181(3–4):103–111

    Article  Google Scholar 

  • Romano C, Poe BT, Tyburczy J, Nestola F (2009) Electrical conductivity of hydrous wadsleyite. Eur J Mineral 21:615–622

    Article  Google Scholar 

  • Schock RN, Duba AG, Shankland TJ (1989) Electrical-conduction in olivine. J Geophys Res-Solid Earth Planet 94(B5):5829–5839

    Article  Google Scholar 

  • Seama N, Baba K, Utada H, Toh H, Tada N, Ichiki M, Matsuno T (2007) 1-D electrical conductivity structure beneath the Philippine Sea: results from an ocean bottom magnetotelluric survey. Phys Earth Planet Inter 162(1–2):2–12

    Article  Google Scholar 

  • Shankland TJ, Duba AG (1990) Standard electrical conductivity of isotropic, homogeneous olivine in the temperature range 1200°–1500°C. Geophys J Int 103:25–31

    Article  Google Scholar 

  • Shimizu H, Koyama T, Baba K, Utada H (2010a) Revised 1-D mantle electrical conductivity structure beneath the north Pacific. Geophys J Int 180(3):1030–1048

    Article  Google Scholar 

  • Shimizu H, Utada H, Baba K, Koyama T, Obayashi M, Fukao Y (2010b) Three-dimensional imaging of electrical conductivity in the mantle transition zone beneath the North Pacific Ocean by a semi-global induction study. Phys Earth Planet Inter 183(1–2):252–269

    Article  Google Scholar 

  • Shimojuku A, Yoshino T, Yamazaki D (2014) Electrical conductivity of brine-bearing quartzite at 1 GPa: implications for fluid content and salinity of the crust. Earth Planet Space 66:9. doi:10.1186/1880-5981-66-2

    Article  Google Scholar 

  • Sifre D, Gardes E, Massuyeau M, Hashim L, Hier-Majumder S, Gaillard F (2014) Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509(7498):81–85. doi:10.1038/nature13245

  • Sinha MC, Navin DA, Macgregor LM, Constable S, Peirce C, White A, Heinson G, Inglis MA (1997) Evidence for accumulated melt beneath the slow-spreading Mid-Atlantic Ridge. Philos Trans R Soc A Math Phys Eng Sci 355(1723):233–253

    Article  Google Scholar 

  • Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from suprasubduction zones and mid-ocean ridges: implications for water storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55

    Article  Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121(3–4):293–325

    Article  Google Scholar 

  • Tyburczy JA, Waff HS (1983) Electrical conductivity of molten basalt and andesite to 25 kilobars pressure: geophysical significance and implications for charge transport and melt structure. J Geophys Res 88(B3):2413–2430

    Article  Google Scholar 

  • Utada H, Koyama T, Shimizu H, Chave AD (2003) A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys Res Lett 30(4), 1194. doi:10.1029/2002GL016092

  • Velimsky J (2010) Electrical conductivity in the lower mantle: constraints from CHAMP satellite data by time-domain EM induction modelling. Phys Earth Planet Inter 180(3–4):111–117

    Article  Google Scholar 

  • Waff HS, Bulau JR (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. J Geophys Res 84(NB11):6109–6114

    Article  Google Scholar 

  • Wallace PJ (1998) Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophys Res Lett 25(19):3639–3642. doi:10.1029/98gl02805

    Article  Google Scholar 

  • Wanamaker BJ, Duba AG (1993) Electrical conductivity of San Carlos olivine along [100] under oxygen- and pyroxene-buffered conditions and implications for defect equilibria. J Geophys Res 98(B1):489–500

    Article  Google Scholar 

  • Wang D-J, Mookherjee M, Xu YS, Karato S (2006) The effect of water on the electrical conductivity of olivine. Nature 443(7114):977–980

    Article  Google Scholar 

  • Workman RK, Hauri E, Hart SR, Wang J, Blusztajn J (2006) Volatile and trace elements in basaltic glasses from Samoa: implications for water distribution in the mantle. Earth Planet Sci Lett 241(3–4):932–951. doi:10.1016/j.epsl.2005.10.028

    Article  Google Scholar 

  • Xu Y-S, Poe BT, Shankland TJ, Rubie DC (1998) Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions. Science 280(5368):1415–1418

    Article  Google Scholar 

  • Yang X-Z (2012) Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth Planet Sci Lett 317:241–250

    Article  Google Scholar 

  • Yoshino T, Katsura T (2009) Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the transition zone. Phys Earth Planet Inter 174(1–4):3–9

    Article  Google Scholar 

  • Yoshino T, Katsura T (2012) Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite. Earth Planet Sci Lett 337:56–67

    Article  Google Scholar 

  • Yoshino T, Katsura T (2013) Electrical conductivity of mantle minerals: role of water in conductivity anomalies. In: Jeanloz R (ed) Annual review of earth and planetary sciences, vol 41. Annual Reviews, Palo Alto, p 605

    Google Scholar 

  • Yoshino T, Walter MJ, Katsura T (2003) Core formation in planetesimals triggered by permeable flow. Nature 422:154–157

    Article  Google Scholar 

  • Yoshino T, Walter MJ, Katsura T (2004) Connectivity of molten Fe alloy in peridotite based on in situ electrical conductivity measurements: implications for core formation in terrestrial planets. Earth Planet Sci Lett 222:625–643

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443(7114):973–976

    Article  Google Scholar 

  • Yoshino T, Manthilake G, Matsuzaki T, Katsura T (2008a) Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451:326–329

    Article  Google Scholar 

  • Yoshino T, Nishi M, Matsuzaki T, Yamazaki D, Katsura T (2008b) Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Phys Earth Planet Inter 170:193–200

    Article  Google Scholar 

  • Yoshino T, Yamazaki D, Ito E, Katsura T (2008c) No interconnection of ferro-periclase in post-spinel phase inferred from conductivity measurement. Geophys Res Lett 35:5

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009a) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288(1–2):291–300

    Article  Google Scholar 

  • Yoshino T, Yamazaki D, Mibe K (2009b) Well-wetted olivine grain boundaries in partially molten peridotite in the asthenosphere. Earth Planet Sci Lett 283(1–4):167–173

    Article  Google Scholar 

  • Yoshino T, Laumonier M, McIsaac E, Katsura T (2010) Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle. Earth Planet Sci Lett 295(3–4):593–602. doi:10.1016/j.epsl.2010.04.050

    Article  Google Scholar 

  • Yoshino T, Ito E, Katsura T, Yamazaki D, Shan SM, Guo XZ, Nishi M, Higo Y, Funakoshi K (2011) Effect of iron content on electrical conductivity of ferropericlase with implications for the spin transition pressure. J Geophys Res-Solid Earth 116, B04202. doi:10.1029/2010jb007801

  • Yoshino T, McIsaac E, Laumonier M, Katsura T (2012a) Electrical conductivity of partial molten carbonate peridotite. Phys Earth Planet Inter 194:1–9

    Article  Google Scholar 

  • Yoshino T, Shimojuku A, Shan S-M, Guo X-Z, Yamazaki D, Ito E, Higo Y, Funakoshi K (2012b) Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs. J Geophys Res-Solid Earth 117, B08205. doi:10.1029/2011jb008774

  • Zhang BH, Yoshino T, Wu XP, Matsuzaki T, Shan SM, Katsura T (2012) Electrical conductivity of enstatite as a function of water content: Implications for the electrical structure in the upper mantle. Earth Planet Sci Lett 357:11–20

    Article  Google Scholar 

  • Zhang B-H, Yoshino T, Yamazakil D, Manthilake G, Katsura T (2014) Electrical in partially molten peridotite under shear deformation, Earth Planet Sci Lett 405:98–109

    Google Scholar 

Download references

Acknowledgement

The author acknowledges S. Baba and T. Kogiso for their helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoo Katsura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Katsura, T., Yoshino, T. (2015). Heterogeneity of Electrical Conductivity in the Oceanic Upper Mantle. In: Khan, A., Deschamps, F. (eds) The Earth's Heterogeneous Mantle. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-15627-9_6

Download citation

Publish with us

Policies and ethics