Skip to main content

The Composition of the Deep Earth

  • Chapter
  • First Online:
The Earth's Heterogeneous Mantle

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Earth composition models rely on three types of information: petrological sampling, geophysical sounding, and cosmochemical constraints. The relative input of a given category of information changes with the depth of the considered Earth’s layer. The constraints brought by the petrological approach are dominant for the upperparts of the Mantle, whereas geophysical constraints play a crucial role for estimating deep Earth (lower mantle and core) composition. Since a direct sampling of the deep Earth is not possible, chemical constraints are mainly brought by the composition of primitive chondrites. In the more general approach, chondritic refractory lithophile elements (RLE) ratios are used to infer their content in the mantle. In addition, the family of “E-Earth models ” uses not only chondritic RLE ratios, but also the bulk composition of a particular family of chondrites: enstatite (EH , EL ) chondrites. These chondrites are the closest to the Earth in terms of isotopic composition as well as redox state and can be used to infer the composition of the deep Earth following a mass balance approach. In this paper, we first review the main characteristics of E-Chondrites in relation to the isotopic and redox characteristics of the Earth. We then present the main steps of the determination of the Earth composition based on a generic model of E-chondrites, and we then expand our previous results to the content of some minor and major trace elements in the deep mantle. The general characteristics of E-Earth compositions and their consequences for Earth differentiation and dynamics are discussed, and paths for further improvements of the model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Calcium had been signaled too (Simon and De Paolo 2010) but more recent results (Huang and Jacobsen 2012) conclude, on the contrary, that calcium, is, again, a good example of E-chondrite Earth identity.

  2. 2.

    Isotopic compositions will be expressed in the \(\delta\) notation, in ‰, unless otherwise specified as \(\delta_{\text{Sample}} = 1000 \left( { \, R_{\text{ech}} /R_{\text{Std}} - 1} \right)\), where the R values are the ratios, D/H, 15N/14N, 18O/16O, etc., and the standards, SMOW for hydrogen and oxygen, atmospheric nitrogen for nitrogen, NBS28 quartz for silicon, etc. The isotopic fractionation of 2 versus 1 is expressed as the fractionation factor \(\alpha = R_{2} /R_{1}\) or the derived expressions, e.g., \(\Delta = \delta_{2} - \delta_{1} \sim 1000{\text{ Ln}}\,\alpha\).

References

  • Albarède F, van der Hilst RD (1999) New mantle convection model that may reconcile conflicting evidence. EOS 80:537–539

    Google Scholar 

  • Alfe D, Gillan MJ, Price GD (2003) Thermodynamics from first principles: temperature and composition of the earth’s core. Min Mag 67:113–123. doi:10.1180/0026461026610089

    Google Scholar 

  • Alfè D, Gillan MJ, Price GD (2002) Composition and temperature of the earth’s core constrained by combining ab initio calculations and seismic data. Earth Planet Sci Lett 195:91–98

    Google Scholar 

  • Allègre CJ, Staudacher T, Sarda P, Kurz M (1983) Constraints on evolution of earth’s mantle from rare gas systematics. Nature 303:762–766

    Google Scholar 

  • Allègre CJ, Poirier JP, Humler E, Hofmann AW (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134:515–526

    Google Scholar 

  • Armytage RMG, Georg R, Savage P, Williams H, Halliday A (2011) Silicon isotopes in meteorites and planetary core formation. Geochim Cosmochim Acta 75:3662–3676. doi:10.1016/j.gca.2011.03.044

    Google Scholar 

  • Asahara Y, Frost D, Rubie D (2007) Partitioning of FeO between magnesiowüstite and liquid iron at high pressures and temperatures: implications for the composition of the earth’s outer core. Earth Planet Sci Lett 257:435–449. doi:10.1016/j.epsl.2009.09.029.D

    Google Scholar 

  • Badro J, Fiquet G, Guyot F, Gregoryanz E, Occelli F, Antonangeli D, d’Astuto M (2007) Effect of light elements on the sound velocities in solid iron: implications for the composition of Earth’s core. Earth Planet Sci Lett 254:233–238. doi:10.1016/j.epsl.2006.11.025

    Google Scholar 

  • Baedecker PA, Wasson JT (1975) Elemental fractionations among enstatite chondrites. Geochim Cosmochim Acta 39:735–765

    Google Scholar 

  • Bickle MJ, Hawkesworth CJ, Martin A, Nisbet EG, O’Nions RK (1976) Mantle composition derived from the chemistry of ultramafic lavas. Nature 263:577

    Google Scholar 

  • Bouhifd MA, Jephcoat AP (2011) Convergence of Ni and Co metal-silicate partition coefficients in the deep magma-ocean and coupled silicon-oxygen solubility in iron melts at high pressures. Earth Planet Sci Lett 307:341–348. doi:10.1016/j.epsl.2011.05.006

    Google Scholar 

  • Cadio C, Panet I, Davaille A, Diament M, Métivier L, de Viron O (2011) Pacific geoid anomalies revisited in light of thermochemical oscillating domes in the lower mantle. Earth Planet Sci Lett 306:123–135

    Google Scholar 

  • Cameron AGW (2011) From interstellar gas to the earth-moon system. Meteor Planet Sci 36:9–22

    Google Scholar 

  • Cammarano F, Goes S, Vacher P, Giardini D (2003) Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet Int 138:197–222

    Google Scholar 

  • Canup RM (2008) Accretion of the earth. Phil Trans R Soc A 366:4061–4075. doi:10.1098/rsta.2008.0101

    Google Scholar 

  • Carter JL (1970) Mineralogy and chemistry of earth’s upper mantle based on partial fusion-partial crystallization model. Geol Soc Am Bull 81:2021–2031. doi:10.1130/0016-7606(1970)81[2021:MACOTE]2.0.CO;2

    Google Scholar 

  • Cartigny P, Boyd SR, Harris J, Javoy M (1997) Nitrogen isotopes in peridotitic diamonds from china: the mantle signature. Terra Nova 94:175–179

    Google Scholar 

  • Christensen UR, Hofmann AW (1994) Segregation of subducted oceanic crust in the convecting mantle. J Geophys Res 99:19867–19884

    Google Scholar 

  • Clayton RN, Onuma N, Mayeda TK (1976) A classification of meteorites based on oxygen isotopes. Earth Planet Sci Lett 30:10–18

    Google Scholar 

  • Cobden L, Goes S, Cammarano F, Connolly JAD (2009a) Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophy J Int 175:627–648. doi:10.1111/j.1365-246X.2008.03903.x

    Google Scholar 

  • Cobden L, Goes S, Ravenna M, Styles E, Cammarano F, Gallagher K, Connolly JAD (2009b) Thermochemical interpretation of 1-D seismic data for the lower mantle: the significance of nonadiabatic thermal gradients and compositional heterogeneity. J Geophys Res 114:B11309. doi:10.1029/2008JB006262

    Google Scholar 

  • Coltice N, Ricard Y (1999) Geochemical observations and one layer mantle convection. Earth Planet Sci Lett 174:125–137

    Google Scholar 

  • Corgne A, Keshav S, Wood B, McDonough W, Fei Y (2008) Metal–silicate partitioning and constraints on core composition and oxygen fugacity during earth accretion. Geochim Cosmochim Acta 72:574–589

    Google Scholar 

  • Dauphas N, Marty B, Reisberg L (2002) Inference on terrestrial genetics from molybdenum isotope systematics. Geophys Res Lett 296:1084–1088

    Google Scholar 

  • Dauphas N, Davis AM, Marty B, Reisberg L (2004) The cosmic molybdenum-ruthenium isotope correlation. Earth Planet Sci Lett 226:465–475

    Google Scholar 

  • Davaille A (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402:756–760

    Google Scholar 

  • Davies R, Goes S, Davies JH, Schuberth BSA, Bunge H-P, Ritsema J (2012) Reconciling dynamic and seismic models of earth’s lower mantle: the dominant role of thermal heterogeneity. Earth Planet Sci Lett 353–354:253–269

    Google Scholar 

  • Della Mora S, Boschi L, Tackley PJ, Nakagawa T, Giardini D (2011) Low seismic resolution cannot explain S/P decorrelation in the lower mantle. Geophys Res Lett 38:L12303. doi:10.1029/2011GL047559

    Google Scholar 

  • Deschamps F, Trampert J (2004) Towards a lower mantle reference temperature and composition. Earth Planet Sci Lett 222:161–175

    Google Scholar 

  • Deschamps F, Kaminski E, Tackley PJ (2011) A deep mantle origin for the primitive signature of ocean island basalt. Nat Geosci 4:879–882. doi:10.1038/ngeo1295

    Google Scholar 

  • Deschamps F, Cobden L, Tackley PJ (2012) The primitive nature of large low shear-wave velocity provinces. Earth Planet Sci Lett 349–350:198–208

    Google Scholar 

  • du Vignaux NM, Fleitout L (2001) Stretching and mixing of viscous blobs in earth’s mantle. J Geophys Res 106:30893–30909

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356

    Google Scholar 

  • Fiquet G, Guyot F, Badro J (2008) The earth’s lower mantle and core. Elements 4:177–182. doi:10.2113/GSELEMENTS.4.3.177

    Google Scholar 

  • Fischer RA, Campbell AJ, Caracas R, Reaman DM, Deraand P, Prakapenka VB (2012) Equation of state and phase diagram of Fe-16 Si alloy as a candidate component of earth’s core. Earth Planet Sci Lett 357:268–276. doi:10.1016/j.epsl.2012.09.022

  • Fitoussi C, Bourdon B (2012) Silicon isotope evidence against an Enstatite Chondrite Earth. Science 335:1477–1480

    Google Scholar 

  • Frost DJ, Mann U, Asahara Y, Rubie DC (2008) The redox state of the mantle during and just after core formation. Phil Trans R Soc A 366:4315–4337. doi:10.1098/rsta.2008.0147

    Google Scholar 

  • Gannoun A, Boyet M, Rizao H, El Goresy A (2011) 146Sm–142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula. PNAS 19:7693–7697

    Google Scholar 

  • Green DH (1964) The petrogenesis of the high-temperature peridotite intrusion in the Lizard area. Cornwall J Petrol 5:134–188

    Google Scholar 

  • Harris PG, Reay A, White IG (1967) Chemical composition of the upper mantle. J Geophys Res 72:6359–6369. doi:10.1029/JZ072i024p06359

    Google Scholar 

  • Hart SR, Zindler A (1986) In search of a bulk-earth composition. Chem Geol 57:247–267

    Google Scholar 

  • Huang S, Jacobsen SB (2012) Calcium isotopic variations in chondrites: implications for planetary isotope compositions. In: 43rd lunar and planetary science conference, 1334

    Google Scholar 

  • Ishii M, Tromp J (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of earth’s mantle. Science 285:1231–1236

    Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wänke H (1979) The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. Proc Lunar Planet Sci Conf 10:2031–2050

    Google Scholar 

  • Javoy M (1995) The integral enstatite chondrite model of the earth. Geophys Res Lett 22:2219–2222

    Google Scholar 

  • Javoy M (1999) Chemical Earth models. CR Acad Sci 329:537–555

    Google Scholar 

  • Javoy M, Balan E, Méheut M, Blanchard M, Lazzeri M (2011) First-principles investigation of equilibrium isotopic fractionation of O-and Si-isotopes between refractory solids and gases in the solar nebula. Earth Planet Sci Lett 319–320, 118–127, doi:10.1016/j.epsl.2011.12.029

  • Javoy M, Pineau F, Demaiffe G (1984) Nitrogen and carbon isotopic composition in the diamonds of Mbuji Mayi (Zaïre). Earth Planet Sci Lett 68:399–412

    Google Scholar 

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62

    Google Scholar 

  • Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M, Labrosse S, Jambon A, Agrinier P, Davaille A, Jaupart C (2010) The chemical composition of the earth: Enstatite chondrite models. Earth Planet Sci Lett 293:259–268. doi:10.1016/j.epsl.2010.02.033

    Google Scholar 

  • Kallemeyn GW, Wasson JT (1986) Compositions of enstatite (EH3, EH4,5 and EL6) chondrites: implications regarding their formation. Geochem Cosmochim Acta 50:2153–2164

    Google Scholar 

  • Kaminski E, Javoy M (2013) A two-stage scenario for the formation of the earth’s mantle and core. Earth Planet Sci Lett 365:97–107. doi:10.1016/j.epsl.2013.01.025

    Google Scholar 

  • Kato T, Ringwood AE, Irifune T (1988) Constraints on element partition coefficients between MgSiO3 perovskite and liquid determined by direct measurements. Earth Planet Sci Lett 90:65–68

    Google Scholar 

  • Kellogg LH, Hager BH, van der Hilst RD (1999) Compositional stratification in the deep mantle. Science 283:1881–1884

    Google Scholar 

  • Khan A, Connolly JAD, Taylor SR (2008) Inversion of seismic and geodetic data for the major element chemistry and temperature of the earth’s mantle. J Geophys Res 113:B09308. doi:10.1029/2007JB005239

    Google Scholar 

  • Khan A, Boschi L, Connolly JAD (2011) Mapping the earth’s thermochemical and anisotropic structure using global surface wave data. J Geophys Res 116:B01301. doi:10.1029/2010JB007828

    Google Scholar 

  • Kong P, Mori T, Ebihara M (1997) Compositional continuity of enstatite chondrites and implications for heterogeneous accretion of the enstatite chondrite parent body. Geochem Cosmochim Acta 61:4895–4914

    Google Scholar 

  • Lassiter JC (2004) Role of recycled oceanic crust in the potassium and argon budget of the earth: toward a resolution of the “missing argon” problem. Geochem Geophy Geosy 5:Q11012. doi:10.1029/2004GC000711

    Google Scholar 

  • Le Bars M, Davaille A (2004) Whole layer convection in a heterogeneous planetary mantle. J Geophys Res 109:B03403. doi:10.1029/2003JB002617

    Google Scholar 

  • Lekic V, Cottaar S, Dziewonski A, Romanowicz B (2012) Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet Sci Lett 357–358:68–77. doi:10.1016/j.epsl.2012.09.014

    Google Scholar 

  • Liebske C, Corgne A, Frost DJ, Rubie DC, Wood BJ (2005) Compositional effects on element partitioning between Mg-silicate perovskite and silicate melts. Contrib Mineral Petrol 149:113–128. doi:10.1007/s00410-004-0641-8

    Google Scholar 

  • Loubet M, Shimizu N, Allègre CJ (1975) Rare earth elements in alpine peridotites. Contrib Mineral Petrol 53:1–12

    Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of the earth primitive mantle and its variance: 1. Method and results. J Geophys Res 112:B03211. doi:10.1029/2005JB004223

    Google Scholar 

  • Maaloe S, Aoki KI (1977) Major element composition of upper mantle estimated from composition of lherzolites. Contrib Mineral Petrol 63:161–7173. doi:10.1007/BF00398777

    Google Scholar 

  • Mann U, Frost DJ, Rubie DC (2009) Evidence for high-pressure core-mantle differentiation from the metal-silicate partitioning of lithophile and weakly-siderophile elements. Geochim Cosmochim Acta 73:7360–7386

    Google Scholar 

  • Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on earth. Earth Planet Sci Lett 313–314:56–66. doi:10.1016/j.epsl.2011.10.040

    Google Scholar 

  • Matas J, Bass J, Ricard Y, Mattern E, Bukowinski MST (2007) On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophys J Int 170:764–780

    Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the earth. Chem Geol 120:223–253

    Google Scholar 

  • McNamara AK, van Keken PE (2000) Cooling of the earth: a parameterized convection study of whole versus layered models. Geochem Geophys Geosyst 1:2000GC000045

    Google Scholar 

  • Moreira M (2013) Noble gas constraints on the origin and evolution of earth’s volatiles. Geochem Perspect 2:229–413

    Google Scholar 

  • Moreira M, Kunz J, Allègre CJ (1998) Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279:1178–1181

    Google Scholar 

  • Moynier F, Paniello RC, Gounelle M, Albarède F, Beck P, Podosek F, Zanda B (2011) Nature of volatile depletion and genetic relationships in enstatite chondrites and aubrites inferred from Zn isotopes. Geochim et Cosmochim Acta 75:297–307

    Google Scholar 

  • Mukhopadhyay S (2012) Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486:101–104

    Google Scholar 

  • Nakagawa T, Tackley PJ, Deschamps F, Connolly JAD (2012) Radial 1-D seismic structures in the deep mantle in mantle convection simulations with self-consistently calculated mineralogy. Geochem Geophys Geosyst 13:Q11002. doi:10.1029/2012GC004325

    Google Scholar 

  • Palme H, Nickel KG (1985) Ca/Al ratio and composition of the Earth’s upper mantle. Geochem. Cosmochem. Acta 49:2123–2132

    Google Scholar 

  • Palot M, Cartigny P, Harris JW, Kaminsky FV, Stachel T (2012) Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond. Earth Planet Sci Lett 357–358:101–104. doi:10.1016/j.epsl.2012.09.015

    Google Scholar 

  • Park J, Okazaki R, Nagao K, Baroschewitz R (2005) Noble gas study of new Enstatite SaU290 with high solar gases. Lunar Planet Sci XXXVI:1632

    Google Scholar 

  • Petyaev M, Khodakovsky I (1986) Thermodynamic properties and conditions of formation of minerals in enstatite meteorites. Chemistry and physics of the terrestrial planets: advances in physical chemistry, vol 6. Springer, Berlin, pp 107–135

    Google Scholar 

  • Poirier JP (1994) Light elements in the earth’s outer core: a critical review. Phys Earth Planet Inter 85:319–337

    Google Scholar 

  • Raquin A, Moreira M (2009) Atmospheric 38Ar/36Ar in the mantle: implications for the nature of the terrestrial parent bodies. Earth Planet Sci Lett 287(3–4):551–558. doi:10.1016/j.epsl.2009.09.003

    Google Scholar 

  • Regelous M, Elliott T, Coath CD (2008) Nickel isotope heterogeneity in the early solar system. Earth Planet Sci Lett 272:330–338

    Google Scholar 

  • Ricard Y, Sramek O, Dubuffet F (2009) A multi-phase model of runaway core-mantle segregation in planetary embryos. Earth Planet Sci Lett 284:144–150. doi:10.1016/j.epsl.2009.04.021

    Google Scholar 

  • Ricolleau A, Fei Y, Cottrell E, Watson H, Deng L, Zhang L, Fiquet G, Auzende A, Roskosz M, Morard G, Prakapenka V (2009) Density profile of pyrolite under the lower mantle conditions. Geophys Res Lett 36:L06302. doi:10.1029/2008GL036759

    Google Scholar 

  • Righter K (2003) Metal–silicate partitioning of siderophile elements and core formation in the early earth. Annu Rev Earth Planet Sci 31:135–174

    Google Scholar 

  • Ringwood AE (1966) The chemical composition and origin of the earth. In: Hurley PM (ed) Advances in earth science. MIT Press, Cambridge, pp 287–356

    Google Scholar 

  • Rubie DC, Frost DJ, Mann U, Asahara Y, Nimmo F, Tsuno K, Kegler P, Holzheid A, Palme H (2011) Heterogeneous accretion, composition and core-mantle differentiation of the earth. Earth Planet Sci Lett 301(1–2):31–42. doi:10.1016/j.epsl.2010.11.030

    Google Scholar 

  • Rubin AE, Huber H, Wasson JT (2009) Possible impact-induced refractory-lithophile fractionations in EL chondrites. Geochem Cosmochim Acta 73:1523–1537

    Google Scholar 

  • Saltzer RL, Stutzmann E, van der Hilst RD (2004) Poisson’s ratio in the lower mantle beneath Alaska: evidence for compositional heterogeneity. J Geophys Res 109:B06301. doi:10.1029/2003JB002712

    Google Scholar 

  • Samuel H, Farnetani CG, Andrault D (2005) Heterogeneous lowermost mantle: compositional constraints and seismological observables. In: van der Hilst RD et al (ed) Earth’s deep mantle: structure, composition, and evolution, vol 160. Geophysics monograph series. AGU, Washington, DC, pp 101–116. doi:10.1029/160GM08

  • Savage PS, Moynier F (2013) Silicon isotopic variation in enstatite meteorites: clues to their origin and earth-forming material. Earth Planet Sci Lett 361:487–496. doi:10.1016/j.epsl.2012.11.016

    Google Scholar 

  • Schonbachler M, Carlson RW, Horan MF, Mock TD, Hauri EH (2010) Heterogeneous accretion and the moderately volatile element budget of earth. Science 328:884–888. doi:10.1126/science.1186239

    Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the earth and planets. Cambridge University Press, Cambridge (940p)

    Google Scholar 

  • Siebert J, Corgne A, Ryerson FJ (2011) Systematics of metal–silicate partitioning for many siderophile elements applied to earth’s core formation. Geochim Cosmochim Acta 75:1451–1489

    Google Scholar 

  • Siebert J, Badro J, Antonangeli D, Ryerson FJ (2012) Metal-silicate partitioning of Ni and Co in a deep magma ocean. Earth Planet Sci Lett 312–322:189–197. doi:10.1016/j.epsl.2012.01.013

    Google Scholar 

  • Simmons NA, Forte AM, Boschi L, Grand SP (2010) GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J Geophys Res 115:B12310. doi:10.1029/2010JB007631

    Google Scholar 

  • Simon JI, DePaolo DJ (2010) Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett 289:457–466. doi:10.1016/j.epsl.2009.11.035

    Google Scholar 

  • Sotin C, Labrosse S (1999) Three-dimensional thermal convection of an isoviscous, infinite-Prandtl-number fluid heated from within and from below: applications to heat transfer in planetary mantles. Phys Earth Planet Inter 112:171–190

    Google Scholar 

  • Srámek O, Milelli L, Ricard Y, Labrosse S (2012) Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus 217:339–354

    Google Scholar 

  • Sun S-S (1982) Chemical composition and origin of the earth’s primitive mantle. Geochim Cosmochim Acta 46:179–192

    Google Scholar 

  • Tackley PJ (2000) Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science 288:2002–2007

    Google Scholar 

  • Tackley PJ (2012) Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Sci Rev 110:1–25. doi:10.1016/j.earscirev.2011.10.001

    Google Scholar 

  • Tan E, Leng W, Zhong S, Gurnis M (2011) On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3D compressible mantle. G-cubed 12:Q07005. doi:10.1029/2011GC003665

    Google Scholar 

  • Tarits P, Mandéa M (2010) The heterogeneous electrical conductivity structure of the lower mantle. Phys Earth Planet Int 183:115–125

    Google Scholar 

  • Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98:5319–5333

    Google Scholar 

  • Trinquier A, Birck JL, Allègre CJ (2007) Widespread 54Cr heterogeneities in the inner solar system. Astrophys J 655:1179–1185

    Google Scholar 

  • Trinquier A, Elliott T, Ulfbeck D, Coath C, Krot AN, Bizzarro M (2009) Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324(5925):295–424. doi:10.1126/science.1168221

    Google Scholar 

  • Tucker JM, Mukhopadhyay S, Schilling J-G (2012) The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet Sci Lett 355–356:244–254. doi:10.1016/j.epsl.2012.08.025

    Google Scholar 

  • van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386:578–584

    Google Scholar 

  • Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334:54–57. doi:10.1126/science.1209300

    Google Scholar 

  • Warren PH (2011) Stable-isotopic anomalies and the accretionary assemblage of the earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet Sci Lett 311:93–100. doi:10.1016/j.epsl.2011.08.047

    Google Scholar 

  • Wasson JT (1985) Meteorites. Springer, Berlin

    Google Scholar 

  • Wasson JT, Kallemeyn GW (1988) Compositions of chondrites. Phil Trans R Soc London A 325:535–544

    Google Scholar 

  • Wiechert U, Halliday AN, Lee D-C, Snyder GA, Taylor LA, Rumble D (2001) Oxygen isotopes and the moon-forming giant impact. Science 294:345–348

    Google Scholar 

  • Williams Q, Knittle E (2005) The uncertain major element bulk composition of earth’s mantle. In: VanDerHilst RD, Bass JD, Matas J, Trampert J (ed) Earth’s deep mantle: structure, composition and evolution, vol 160. J. Book Series: Geophysical Monograph Series, pp 187–199. doi: 10.1029/160GM12

  • Wood B (2011) The formation and differentiation of earth. Phys Today 64:40–45. doi:10.1063/PT.3.1362

    Google Scholar 

  • Zhang Y, Benoit P, Sears DW (1995) The classification and complex thermal history of the enstatite chondrites. J Geophys Res 100:9417–9438

    Google Scholar 

  • Zhang J, Dauphas N, Davis AM, Leya I, Fedkin A (2012) The proto-earth as a significant source of lunar material. Nat Geosci 5:251–255. doi:10.1038/NGEO1429

    Google Scholar 

Download references

Acknowledgments

The author thanks an anonymous reviewer for his comments, and the Editor Frédéric Deschamps for comments and discussions and for his editorial handling. This work was supported in part by an INSU-CNRS grant from the PNP program and by ANR-11-IS04-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edouard Kaminski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaminski, E., Javoy, M. (2015). The Composition of the Deep Earth. In: Khan, A., Deschamps, F. (eds) The Earth's Heterogeneous Mantle. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-15627-9_10

Download citation

Publish with us

Policies and ethics