Skip to main content

Imaging and Ageing of the Aorta and Large Arteries in the Lower Extremity

  • Chapter
Assessment of Preclinical Organ Damage in Hypertension

Abstract

Imaging of the aorta and the large arteries has evolved in recent decades to be based on non-invasive methods, leaving the invasive techniques to the time when endovascular interventions are needed. However, the need for a detailed planning of the interventions has also led to a development of high-definition imaging and 3-D imaging post-processing. More recently there have been developments aiming at integrating a more functional component in the preoperative imaging at the same time that even the intraoperative imaging has been improved. This chapter summarises the different imaging modalities and their applications in occlusive and aneurysmatic disease of the aorta and large arteries of the lower limb.

A more general view on arterial ageing is necessary to establish to better understand the process of arterial stiffness (arteriosclerosis) preceding atherosclerosis and the plaque formation. The concept of early vascular ageing (EVA) has emerged as a model to elucidate on the early stages of this ageing process and can lead to new ideas for cardiovascular prevention and intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hodgson R, McWilliams RG, Simpson A, Gould DA, Brennan JA, Gilling-Smith GL, et al. Migration versus apparent migration: importance of errors due to positioning variation in plain radiographic follow-up of aortic stent-grafts. J Endovasc Ther. 2003;10(5):902–10.

    PubMed  Google Scholar 

  2. Murphy M, Hodgson R, Harris PL, McWilliams RG, Hartley DE, Lawrence-Brown MM. Plain radiographic surveillance of abdominal aortic stent-grafts: the Liverpool/Perth protocol. J Endovasc Ther. 2003;10(5):911–2.

    PubMed  Google Scholar 

  3. Wilmink AB, Forshaw M, Quick CR, Hubbard CS, Day NE. Accuracy of serial screening for abdominal aortic aneurysms by ultrasound. J Med Screen. 2002;9(3):125–7.

    CAS  PubMed  Google Scholar 

  4. Wilmink AB, Hubbard CS, Quick CR. Quality of the measurement of the infrarenal aortic diameter by ultrasound. J Med Screen. 1997;4(1):49–53.

    CAS  PubMed  Google Scholar 

  5. Lindholt JS, Vammen S, Juul S, Henneberg EW, Fasting H. The validity of ultrasonographic scanning as screening method for abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 1999;17(6):472–5.

    CAS  PubMed  Google Scholar 

  6. Beales L, Wolstenhulme S, Evans JA, West R, Scott DJ. Reproducibility of ultrasound measurement of the abdominal aorta. Br J Surg. 2011;98(11):1517–25.

    CAS  PubMed  Google Scholar 

  7. Grondal N, Bramsen MB, Thomsen MD, Rasmussen CB, Lindholt JS. The cardiac cycle is a major contributor to variability in size measurements of abdominal aortic aneurysms by ultrasound. Eur J Vasc Endovasc Surg. 2012;43(1):30–3.

    CAS  PubMed  Google Scholar 

  8. Hartshorne TC, McCollum CN, Earnshaw JJ, Morris J, Nasim A. Ultrasound measurement of aortic diameter in a national screening programme. Eur J Vasc Endovasc Surg. 2011;42(2):195–9.

    CAS  PubMed  Google Scholar 

  9. Sprouse I, Richard L, Meier I, George H, LeSar CJ, DeMasi RJ, Sood J, Parent FN, et al. Comparison of abdominal aortic aneurysm diameter measurements obtained with ultrasound and computed tomography: is there a difference? J Vasc Surg. 2003;38(3):466–71.

    PubMed  Google Scholar 

  10. Lederle FA, Wilson SE, Johnson GR, Reinke DB, Littooy FN, Acher CW, et al. Variability in measurement of abdominal aortic aneurysms. Abdominal Aortic Aneurysm Detection and Management Veterans Administration Cooperative Study Group. J Vasc Surg. 1995;21(6):945–52.

    CAS  PubMed  Google Scholar 

  11. Manning BJ, Kristmundsson T, Sonesson B, Resch T. Abdominal aortic aneurysm diameter: a comparison of ultrasound measurements with those from standard and three-dimensional computed tomography reconstruction. J Vasc Surg. 2009;50(2):263–8.

    PubMed  Google Scholar 

  12. Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 2011;41 Suppl 1:S1–58.

    PubMed  Google Scholar 

  13. Dias NV, Riva L, Ivancev K, Resch T, Sonesson B, Malina M. Is there a benefit of frequent CT follow-up after EVAR? Eur J Vasc Endovasc Surg. 2009;37(4):425–30.

    CAS  PubMed  Google Scholar 

  14. Perini P, Sediri I, Midulla M, Delsart P, Gautier C, Haulon S. Contrast-enhanced ultrasound vs. CT angiography in fenestrated EVAR surveillance: a single-center comparison. J Endovasc Ther. 2012;19(5):648–55.

    PubMed  Google Scholar 

  15. Perini P, Sediri I, Midulla M, Delsart P, Mouton S, Gautier C, et al. Single-centre prospective comparison between contrast-enhanced ultrasound and computed tomography angiography after EVAR. Eur J Vasc Endovasc Surg. 2011;42(6):797–802.

    CAS  PubMed  Google Scholar 

  16. Mirza TA, Karthikesalingam A, Jackson D, Walsh SR, Holt PJ, Hayes PD, et al. Duplex ultrasound and contrast-enhanced ultrasound versus computed tomography for the detection of endoleak after EVAR: systematic review and bivariate meta-analysis. Eur J Vasc Endovasc Surg. 2010;39(4):418–28.

    CAS  PubMed  Google Scholar 

  17. Malina M, Länne T, Ivancev K, Lindblad B, Brunkwall J. Reduced pulsatile wall motion of abdominal aortic aneurysms after endovascular repair. J Vasc Surg. 1998;27(4):624–31.

    CAS  PubMed  Google Scholar 

  18. Lindblad B, Dias N, Malina M, Ivancev K, Resch T, Hansen F, et al. Pulsatile wall motion (PWM) measurements after endovascular abdominal aortic aneurysm exclusion are not useful in the classification of endoleak. Eur J Vasc Endovasc Surg. 2004;28(6):623–8.

    CAS  PubMed  Google Scholar 

  19. Long A, Rouet L, Debreuve A, Ardon R, Barbe C, Becquemin JP, et al. Abdominal aortic aneurysm imaging with 3-D ultrasound: 3-D-based maximum diameter measurement and volume quantification. Ultrasound Med Biol. 2013;39(8):1325–36.

    CAS  PubMed  Google Scholar 

  20. Bredahl K, Long A, Taudorf M, Lonn L, Rouet L, Ardon R, et al. Volume estimation of the aortic sac after EVAR using 3-D ultrasound – a novel, accurate and promising technique. Eur J Vasc Endovasc Surg. 2013;45(5):450–5; discussion 6.

    CAS  PubMed  Google Scholar 

  21. Wittek A, Karatolios K, Bihari P, Schmitz-Rixen T, Moosdorf R, Vogt S, et al. In vivo determination of elastic properties of the human aorta based on 4D ultrasound data. J Mech Behav Biomed Mater. 2013;27:167–83.

    PubMed  Google Scholar 

  22. Karatolios K, Wittek A, Nwe TH, Bihari P, Shelke A, Josef D, et al. Method for aortic wall strain measurement with three-dimensional ultrasound speckle tracking and fitted finite element analysis. Ann Thorac Surg. 2013;96(5):1664–71.

    PubMed  Google Scholar 

  23. Janvier MA, Merouche S, Allard L, Soulez G, Cloutier G. A 3-D ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility. Ultrasound Med Biol. 2014;40(1):232–43.

    PubMed  Google Scholar 

  24. Eiberg JP, Jensen F, Gronvall Rasmussen JB, Schroeder TV. Screening for aortoiliac lesions by visual interpretation of the common femoral Doppler waveform. Eur J Vasc Endovasc Surg. 2001;22(4):331–6.

    CAS  PubMed  Google Scholar 

  25. Shaalan WE, French-Sherry E, Castilla M, Lozanski L, Bassiouny HS. Reliability of common femoral artery hemodynamics in assessing the severity of aortoiliac inflow disease. J Vasc Surg. 2003;37(5):960–9.

    PubMed  Google Scholar 

  26. Spronk S, den Hoed PT, de Jonge LC, van Dijk LC, Pattynama PM. Value of the duplex waveform at the common femoral artery for diagnosing obstructive aortoiliac disease. J Vasc Surg. 2005;42(2):236–42; discussion 42.

    PubMed  Google Scholar 

  27. Schiano V, Sirico G, Giugliano G, Laurenzano E, Brevetti L, Perrino C, et al. Femoral plaque echogenicity and cardiovascular risk in claudicants. J Am Coll Cardiol Img. 2012;5(4):348–57.

    Google Scholar 

  28. Sirico G, Brevetti G, Lanero S, Laurenzano E, Luciano R, Chiariello M. Echolucent femoral plaques entail higher risk of echolucent carotid plaques and a more severe inflammatory profile in peripheral arterial disease. J Vasc Surg. 2009;49(2):346–51.

    PubMed  Google Scholar 

  29. Kaneda H, Ako J, Terashima M. Intravascular ultrasound imaging for assessing regression and progression in coronary artery disease. Am J Cardiol. 2010;106(12):1735–46.

    PubMed  Google Scholar 

  30. Garcia-Garcia HM, Gogas BD, Serruys PW, Bruining N. IVUS-based imaging modalities for tissue characterization: similarities and differences. Int J Cardiovasc Imaging. 2011;27(2):215–24.

    PubMed Central  PubMed  Google Scholar 

  31. van Essen JA, Gussenhoven EJ, Blankensteijn JD, Honkoop J, van Dijk LC, van Sambeek MR, et al. Three-dimensional intravascular ultrasound assessment of abdominal aortic aneurysm necks. J Endovasc Ther. 2000;7(5):380–8.

    PubMed  Google Scholar 

  32. Koschyk DH, Nienaber CA, Knap M, Hofmann T, Kodolitsch YV, Skriabina V, et al. How to guide stent-graft implantation in type B aortic dissection? Comparison of angiography, transesophageal echocardiography, and intravascular ultrasound. Circulation. 2005;112(9 Suppl):I260–4.

    PubMed  Google Scholar 

  33. Rubin GD. MDCT imaging of the aorta and peripheral vessels. Eur J Radiol. 2003;45 Suppl 1:S42–9.

    PubMed  Google Scholar 

  34. Lloyd GM, Bown MJ, Norwood MG, Deb R, Fishwick G, Bell PR, et al. Feasibility of preoperative computer tomography in patients with ruptured abdominal aortic aneurysm: a time-to-death study in patients without operation. J Vasc Surg. 2004;39(4):788–91.

    CAS  PubMed  Google Scholar 

  35. Tran DN, Straka M, Roos JE, Napel S, Fleischmann D. Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol. 2009;16(2):160–71.

    PubMed  Google Scholar 

  36. Iezzi R, Cotroneo AR, Giammarino A, Spigonardo F, Storto ML. Low-dose multidetector-row CT-angiography of abdominal aortic aneurysm after endovascular repair. Eur J Radiol. 2011;79(1):21–8.

    CAS  PubMed  Google Scholar 

  37. Kotze CW, Rudd JH, Ganeshan B, Menezes LJ, Brookes J, Agu O, et al. CT signal heterogeneity of abdominal aortic aneurysm as a possible predictive biomarker for expansion. Atherosclerosis. 2014;233(2):510–7.

    CAS  PubMed  Google Scholar 

  38. Shapiro MD. Is the “triple rule-out” study an appropriate indication for cardiovascular CT? J Cardiovasc Comput Tomogr. 2009;3(2):100–3.

    PubMed  Google Scholar 

  39. van Keulen JW, van Prehn J, Prokop M, Moll FL, van Herwaarden JA. Dynamics of the aorta before and after endovascular aneurysm repair: a systematic review. Eur J Vasc Endovasc Surg. 2009;38(5):586–96.

    PubMed  Google Scholar 

  40. Iezzi R, Di Stasi C, Dattesi R, Pirro F, Nestola M, Cina A, et al. Proximal aneurysmal neck: dynamic ECG-gated CT angiography–conformational pulsatile changes with possible consequences for endograft sizing. Radiology. 2011;260(2):591–8.

    PubMed  Google Scholar 

  41. Georgakarakos E, Ioannou CV, Papaharilaou Y, Kostas T, Katsamouris AN. Computational evaluation of aortic aneurysm rupture risk: what have we learned so far? J Endovasc Ther. 2011;18(2):214–25.

    PubMed  Google Scholar 

  42. van Keulen JW, Moll FL, van Herwaarden JA. Tips and techniques for optimal stent graft placement in angulated aneurysm necks. J Vasc Surg. 2010;52(4):1081–6.

    PubMed  Google Scholar 

  43. Higashiura W, Kichikawa K, Sakaguchi S, Tabayashi N, Taniguchi S, Uchida H. Accuracy of centerline of flow measurement for sizing of the Zenith AAA endovascular graft and predictive factor for risk of inadequate sizing. Cardiovasc Intervent Radiol. 2009;32(3):441–8.

    PubMed  Google Scholar 

  44. Rozenblit AM, Patlas M, Rosenbaum AT, Okhi T, Veith FJ, Laks MP, et al. Detection of endoleaks after endovascular repair of abdominal aortic aneurysm: value of unenhanced and delayed helical CT acquisitions. Radiology. 2003;227(2):426–33.

    PubMed  Google Scholar 

  45. Ascenti G, Mazziotti S, Lamberto S, Bottari A, Caloggero S, Racchiusa S, et al. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay. AJR Am J Roentgenol. 2011;196(6):1408–14.

    PubMed  Google Scholar 

  46. Chandarana H, Godoy MC, Vlahos I, Graser A, Babb J, Leidecker C, et al. Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms–initial observations. Radiology. 2008;249(2):692–700.

    PubMed  Google Scholar 

  47. Numburi UD, Schoenhagen P, Flamm SD, Greenberg RK, Primak AN, Saba OI, et al. Feasibility of dual-energy CT in the arterial phase: imaging after endovascular aortic repair. AJR Am J Roentgenol. 2010;195(2):486–93.

    PubMed  Google Scholar 

  48. Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M, et al. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology. 2008;249(2):682–91.

    PubMed  Google Scholar 

  49. Sommer WH, Graser A, Becker CR, Clevert DA, Reiser MF, Nikolaou K, et al. Image quality of virtual noncontrast images derived from dual-energy CT angiography after endovascular aneurysm repair. J Vasc Interv Radiol. 2010;21(3):315–21.

    PubMed  Google Scholar 

  50. O’Neill S, Greenberg RK, Resch T, Bathurst S, Fleming D, Kashyap V, et al. An evaluation of centerline of flow measurement techniques to assess migration after thoracic endovascular aneurysm repair. J Vasc Surg. 2006;43(6):1103–10.

    PubMed  Google Scholar 

  51. Louis N, Bruguiere E, Kobeiter H, Desgranges P, Allaire E, Kirsch M, et al. Virtual angioscopy and 3D navigation: a new technique for analysis of the aortic arch after vascular surgery. Eur J Vasc Endovasc Surg. 2010;40(3):340–7.

    CAS  PubMed  Google Scholar 

  52. Lee JT, Aziz IN, Haukoos JS, Donayre CE, Walot I, Kopchok GE, et al. Volume regression of abdominal aortic aneurysms and its relation to successful endoluminal exclusion. J Vasc Surg. 2003;38(6):1254–63.

    PubMed  Google Scholar 

  53. Wever JJ, Blankensteijn JD, Th M Mali WP, Eikelboom BC. Maximal aneurysm diameter follow-up is inadequate after endovascular abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2000;20(2):177–82.

    CAS  PubMed  Google Scholar 

  54. Leung DA, Debatin JF. Three-dimensional contrast-enhanced magnetic resonance angiography of the thoracic vasculature. Eur Radiol. 1997;7(7):981–9.

    CAS  PubMed  Google Scholar 

  55. Leung DA, Hany TF, Debatin JF. Three-dimensional contrast-enhanced magnetic resonance angiography of the abdominal arterial system. Cardiovasc Intervent Radiol. 1998;21:1–10.

    CAS  PubMed  Google Scholar 

  56. Zhang Z, Nair SA, McMurry TJ. Gadolinium meets medicinal chemistry: MRI contrast agent development. Curr Med Chem. 2005;12(7):751–78.

    CAS  PubMed  Google Scholar 

  57. Elmstahl B, Nyman U, Leander P, Chai CM, Golman K, Bjork J, et al. Gadolinium contrast media are more nephrotoxic than iodine media. The importance of osmolality in direct renal artery injections. Eur Radiol. 2006;16(12):2712–20.

    PubMed  Google Scholar 

  58. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–57.

    PubMed  Google Scholar 

  59. Abu-Alfa AK. Nephrogenic systemic fibrosis and gadolinium-based contrast agents. Adv Chronic Kidney Dis. 2011;18(3):188–98.

    PubMed  Google Scholar 

  60. Saida T, Mori K, Sato F, Shindo M, Takahashi H, Takahashi N, et al. Prospective intraindividual comparison of unenhanced magnetic resonance imaging vs contrast-enhanced computed tomography for the planning of endovascular abdominal aortic aneurysm repair. J Vasc Surg. 2012;55(3):679–87.

    PubMed  Google Scholar 

  61. Krishnam MS, Tomasian A, Malik S, Desphande V, Laub G, Ruehm SG. Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases. Eur Radiol. 2010;20(6):1311–20.

    PubMed Central  PubMed  Google Scholar 

  62. Thierfelder KM, Meimarakis G, Nikolaou K, Sommer WH, Schmitt P, Kazmierczak PM, et al. Non-contrast-enhanced MR angiography at 3 Tesla in patients with advanced peripheral arterial occlusive disease. PLoS One. 2014;9(3):e91078.

    PubMed Central  PubMed  Google Scholar 

  63. Knobloch G, Gielen M, Lauff MT, Romano VC, Schmitt P, Rick M, et al. ECG-gated quiescent-interval single-shot MR angiography of the lower extremities: initial experience at 3 T. Clin Radiol. 2014;69:485–91.

    CAS  PubMed  Google Scholar 

  64. Francois CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr JC. Unenhanced MR angiography of the thoracic aorta: initial clinical evaluation. AJR Am J Roentgenol. 2008;190(4):902–6.

    PubMed  Google Scholar 

  65. Ludman CN, Yusuf SW, Whitaker SC, Gregson RH, Walker S, Hopkinson BR. Feasibility of using dynamic contrast-enhanced magnetic resonance angiography as the sole imaging modality prior to endovascular repair of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2000;19(5):524–30.

    CAS  PubMed  Google Scholar 

  66. Haulon S, Lions C, McFadden EP, Koussa M, Gaxotte V, Halna P, et al. Prospective evaluation of magnetic resonance imaging after endovascular treatment of infrarenal aortic aneurysms. Eur J Vasc Endovasc Surg. 2001;22(1):62–9.

    CAS  PubMed  Google Scholar 

  67. Alerci M, Oberson M, Fogliata A, Gallino A, Vock P, Wyttenbach R. Prospective, intraindividual comparison of MRI versus MDCT for endoleak detection after endovascular repair of abdominal aortic aneurysms. Eur Radiol. 2009;19(5):1223–31.

    PubMed  Google Scholar 

  68. van der Laan MJ, Bartels LW, Viergever MA, Blankensteijn JD. Computed tomography versus magnetic resonance imaging of endoleaks after EVAR. Eur J Vasc Endovasc Surg. 2006;32(4):361–5.

    PubMed  Google Scholar 

  69. Cornelissen SA, Prokop M, Verhagen HJ, Adriaensen ME, Moll FL, Bartels LW. Detection of occult endoleaks after endovascular treatment of abdominal aortic aneurysm using magnetic resonance imaging with a blood pool contrast agent: preliminary observations. Invest Radiol. 2010;45(9):548–53.

    CAS  PubMed  Google Scholar 

  70. Ersoy H, Jacobs P, Kent CK, Prince MR. Blood pool MR angiography of aortic stent-graft endoleak. AJR Am J Roentgenol. 2004;182(5):1181–6.

    PubMed  Google Scholar 

  71. van der Laan MJ, Bartels LW, Bakker CJ, Viergever MA, Blankensteijn JD. Suitability of 7 aortic stent-graft models for MRI-based surveillance. J Endovasc Ther. 2004;11(4):366–71.

    PubMed  Google Scholar 

  72. Merkx MA, van ’t Veer M, Speelman L, Breeuwer M, Buth J, van de Vosse FN. Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis. J Biomech. 2009;42(14):2369–73.

    CAS  PubMed  Google Scholar 

  73. van der Laan MJ, Bakker CJ, Blankensteijn JD, Bartels LW. Dynamic CE-MRA for endoleak classification after endovascular aneurysm repair. Eur J Vasc Endovasc Surg. 2006;31(2):130–5.

    PubMed  Google Scholar 

  74. van Herwaarden JA, Bartels LW, Muhs BE, Vincken KL, Lindeboom MY, Teutelink A, et al. Dynamic magnetic resonance angiography of the aneurysm neck: conformational changes during the cardiac cycle with possible consequences for endograft sizing and future design. J Vasc Surg. 2006;44(1):22–8.

    PubMed  Google Scholar 

  75. van Prehn J, Vincken KL, Sprinkhuizen SM, Viergever MA, van Keulen JW, van Herwaarden JA, et al. Aortic pulsatile distention in young healthy volunteers is asymmetric: analysis with ECG-gated MRI. Eur J Vasc Endovasc Surg. 2009;37(2):168–74.

    PubMed  Google Scholar 

  76. Clough RE, Waltham M, Giese D, Taylor PR, Schaeffter T. A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging. J Vasc Surg. 2012;55(4):914–23.

    PubMed  Google Scholar 

  77. Francois CJ, Markl M, Schiebler ML, Niespodzany E, Landgraf BR, Schlensak C, et al. Four-dimensional, flow-sensitive magnetic resonance imaging of blood flow patterns in thoracic aortic dissections. J Thorac Cardiovasc Surg. 2013;145(5):1359–66.

    PubMed Central  PubMed  Google Scholar 

  78. Clough RE, Hussain T, Uribe S, Greil GF, Razavi R, Taylor PR, et al. A new method for quantification of false lumen thrombosis in aortic dissection using magnetic resonance imaging and a blood pool contrast agent. J Vasc Surg. 2011;54(5):1251–8.

    PubMed  Google Scholar 

  79. Howarth SP, Tang TY, Graves MJ, U-King-Im JM, Li ZY, Walsh SR, et al. Non-invasive MR imaging of inflammation in a patient with both asymptomatic carotid atheroma and an abdominal aortic aneurysm: a case report. Ann Surg Innov Res. 2007;1:4.

    PubMed Central  PubMed  Google Scholar 

  80. Richards JM, Semple SI, MacGillivray TJ, Gray C, Langrish JP, Williams M, et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ Cardiovasc Imaging. 2011;4(3):274–81.

    PubMed  Google Scholar 

  81. Sadat U, Taviani V, Patterson AJ, Young VE, Graves MJ, Teng Z, et al. Ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging of abdominal aortic aneurysms–a feasibility study. Eur J Vasc Endovasc Surg. 2011;41(2):167–74.

    CAS  PubMed  Google Scholar 

  82. Truijers M, Futterer JJ, Takahashi S, Heesakkers RA, Blankensteijn JD, Barentsz JO. In vivo imaging of the aneurysm wall with MRI and a macrophage-specific contrast agent. AJR Am J Roentgenol. 2009;193(5):W437–41.

    PubMed  Google Scholar 

  83. Eggebrecht H, Kuhl H, Kaiser GM, Aker S, Zenge MO, Stock F, et al. Feasibility of real-time magnetic resonance-guided stent-graft placement in a swine model of descending aortic dissection. Eur Heart J. 2006;27(5):613–20.

    PubMed  Google Scholar 

  84. Raman VK, Karmarkar PV, Guttman MA, Dick AJ, Peters DC, Ozturk C, et al. Real-time magnetic resonance-guided endovascular repair of experimental abdominal aortic aneurysm in swine. J Am Coll Cardiol. 2005;45(12):2069–77.

    PubMed Central  PubMed  Google Scholar 

  85. Wyers MC, Fillinger MF, Schermerhorn ML, Powell RJ, Rzucidlo EM, Walsh DB, et al. Endovascular repair of abdominal aortic aneurysm without preoperative arteriography. J Vasc Surg. 2003;38(4):730–8.

    PubMed  Google Scholar 

  86. Beebe HG, Kritpracha B, Serres S, Pigott JP, Price CI, Williams DM. Endograft planning without preoperative arteriography: a clinical feasibility study. J Endovasc Ther. 2000;7(1):8–15.

    CAS  PubMed  Google Scholar 

  87. Walker TG, Kalva SP, Ganguli S, Oklu R, Salazar GM, Waltman AC, et al. Image optimization during endovascular aneurysm repair. AJR Am J Roentgenol. 2012;198(1):200–6.

    PubMed  Google Scholar 

  88. Criado E, Upchurch Jr GR, Young K, Rectenwald JE, Coleman DM, Eliason JL, et al. Endovascular aortic aneurysm repair with carbon dioxide-guided angiography in patients with renal insufficiency. J Vasc Surg. 2012;55:1570–5.

    PubMed  Google Scholar 

  89. Lee AD, Hall RG. An evaluation of the use of carbon dioxide angiography in endovascular aortic aneurysm repair. Vasc Endovascular Surg. 2010;44(5):341–4.

    PubMed  Google Scholar 

  90. Eide KR, Odegard A, Myhre HO, Hatlinghus S, Haraldseth O. DynaCT in pre-treatment evaluation of aortic aneurysm before EVAR. Eur J Vasc Endovasc Surg. 2011;42(3):332–9.

    CAS  PubMed  Google Scholar 

  91. Eide KR, Odegard A, Myhre HO, Lydersen S, Hatlinghus S, Haraldseth O. DynaCT during EVAR–a comparison with multidetector CT. Eur J Vasc Endovasc Surg. 2009;37(1):23–30.

    CAS  PubMed  Google Scholar 

  92. Nordon IM, Hinchliffe RJ, Malkawi AH, Taylor J, Holt PJ, Morgan R, et al. Validation of DynaCT in the morphological assessment of abdominal aortic aneurysm for endovascular repair. J Endovasc Ther. 2010;17(2):183–9.

    PubMed  Google Scholar 

  93. Dijkstra ML, Eagleton MJ, Greenberg RK, Mastracci T, Hernandez A. Intraoperative C-arm cone-beam computed tomography in fenestrated/branched aortic endografting. J Vasc Surg. 2011;53(3):583–90.

    PubMed  Google Scholar 

  94. Sailer AM, de Haan MW, Peppelenbosch AG, Jacobs MJ, Wildberger JE, Schurink GW. CTA with fluoroscopy image fusion guidance in endovascular complex aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2014;47(4):349–56.

    CAS  PubMed  Google Scholar 

  95. Tacher V, Lin M, Desgranges P, Deux JF, Grunhagen T, Becquemin JP, et al. Image guidance for endovascular repair of complex aortic aneurysms: comparison of two-dimensional and three-dimensional angiography and image fusion. J Vasc Interv Radiol. 2013;24(11):1698–706.

    PubMed Central  PubMed  Google Scholar 

  96. Carrell TWG, Modarai B, Brown JRI, Penney GP. Feasibility and limitations of an automated 2D-3D rigid image registration system for complex endovascular aortic procedures. J Endovasc Ther. 2010;17(4):527–33.

    PubMed  Google Scholar 

  97. Maurel B, Hertault A, Gonzalez TM, Sobocinski J, Le Roux M, Delaplace J, et al. Evaluation of visceral artery displacement by endograft delivery system insertion. J Endovasc Ther. 2014;21(2):339–47.

    PubMed  Google Scholar 

  98. Faranesh AZ, Kellman P, Ratnayaka K, Lederman RJ. Integration of cardiac and respiratory motion into MRI roadmaps fused with x-ray. Med Phys. 2013;40(3):032302.

    PubMed Central  PubMed  Google Scholar 

  99. Kotze CW, Groves AM, Menezes LJ, Harvey R, Endozo R, Kayani IA, et al. What is the relationship between (1)F-FDG aortic aneurysm uptake on PET/CT and future growth rate? Eur J Nucl Med Mol Imaging. 2011;38(8):1493–9.

    PubMed  Google Scholar 

  100. Kotze CW, Menezes LJ, Endozo R, Groves AM, Ell PJ, Yusuf SW. Increased metabolic activity in abdominal aortic aneurysm detected by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Eur J Vasc Endovasc Surg. 2009;38(1):93–9.

    CAS  PubMed  Google Scholar 

  101. Palombo D, Morbelli S, Spinella G, Pane B, Marini C, Rousas N, et al. A positron emission tomography/computed tomography (PET/CT) evaluation of asymptomatic abdominal aortic aneurysms: another point of view. Ann Vasc Surg. 2012;26:491–9.

    PubMed  Google Scholar 

  102. Reeps C, Essler M, Pelisek J, Seidl S, Eckstein HH, Krause BJ. Increased 18F-fluorodeoxyglucose uptake in abdominal aortic aneurysms in positron emission/computed tomography is associated with inflammation, aortic wall instability, and acute symptoms. J Vasc Surg. 2008;48(2):417–23; discussion 24.

    PubMed  Google Scholar 

  103. Truijers M, Kurvers HA, Bredie SJ, Oyen WJ, Blankensteijn JD. In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J Endovasc Ther. 2008;15(4):462–7.

    PubMed  Google Scholar 

  104. Wasselius J, Malmstedt J, Kalin B, Larsson S, Sundin A, Hedin U, et al. High 18F-FDG uptake in synthetic aortic vascular grafts on PET/CT in symptomatic and asymptomatic patients. J Nucl Med. 2008;49(10):1601–5.

    PubMed  Google Scholar 

  105. Xu XY, Borghi A, Nchimi A, Leung J, Gomez P, Cheng Z, et al. High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur J Vasc Endovasc Surg. 2010;39(3):295–301.

    CAS  PubMed  Google Scholar 

  106. Cavalcanti Filho JL, de Souza Leao Lima R, de Souza Machado Neto L, Kayat Bittencourt L, Domingues RC, da Fonseca LM. PET/CT and vascular disease: current concepts. Eur J Radiol. 2011;80(1):60–7.

    PubMed  Google Scholar 

  107. Kitagawa T, Kosuge H, Chang E, James ML, Yamamoto T, Shen B, et al. Integrin-targeted molecular imaging of experimental abdominal aortic aneurysms by (18)F-labeled Arg-Gly-Asp positron-emission tomography. Circ Cardiovasc Imaging. 2013;6(6):950–6.

    PubMed Central  PubMed  Google Scholar 

  108. Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46:454–62.

    CAS  PubMed  Google Scholar 

  109. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    CAS  PubMed  Google Scholar 

  110. Nilsson PM, Lurbe E, Laurent S. The early life origins of vascular ageing and cardiovascular risk: the EVA syndrome (review). J Hypertens. 2008;26:1049–57.

    CAS  PubMed  Google Scholar 

  111. Nilsson PM, Boutouyrie P, Laurent S. Vascular aging: a tale of EVA and ADAM in cardiovascular risk assessment and prevention. Hypertension. 2009;54:3–10.

    CAS  PubMed  Google Scholar 

  112. Nilsson PM, Boutouyrie P, Cunha P, Kotsis V, Narkiewicz K, Parati G, et al. Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular prevention. J Hypertens. 2013;8:1517–26.

    Google Scholar 

  113. Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010;31:2338–50.

    Google Scholar 

  114. Gottsäter M, Östling G, Persson M, Engström G, Melander O, Nilsson PM. Non-hemodynamic predictors of arterial stiffness after 17 years of follow-up: the Malmö Diet and Cancer study. J Hypertens. 2015 Jan 28. [Epub ahead of print] PubMed PMID: 25634451.

    Google Scholar 

  115. Nilsson PM. Genetic and environmental determinants of early vascular ageing (EVA). Curr Vasc Pharmacol. 2012;10:700–1.

    CAS  PubMed  Google Scholar 

  116. International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9.

    Google Scholar 

  117. Tarasov KV, Sanna S, Scuteri A, Strait JB, Orrù M, Parsa A, et al. COL4A1 is associated with arterial stiffness by genome-wide association scan. Circ Cardiovasc Genet. 2009;2:151–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Ong KT, Delerme S, Pannier B, Safar ME, Benetos A, Laurent S, Boutouyrie P; investigators. Aortic stiffness is reduced beyond blood pressure lowering by short-term and long-term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens 2011;29:1034–42.

    Google Scholar 

  119. Laurent S, Mousseaux E, Boutouyrie P. Arterial stiffness as an imaging biomarker: are all pathways equal? Hypertension. 2013;62:10–2.

    CAS  PubMed  Google Scholar 

  120. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.

    PubMed  Google Scholar 

  121. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    PubMed Central  PubMed  Google Scholar 

  122. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, Artery Society, European Society of Hypertension Working Group on Vascular Structure and Function, European Network for Non-invasive Investigation of Large Arteries, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30:445–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Nilsson MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dias, N.V., Gonçalves, I., Nilsson, P.M. (2015). Imaging and Ageing of the Aorta and Large Arteries in the Lower Extremity. In: Agabiti Rosei, E., Mancia, G. (eds) Assessment of Preclinical Organ Damage in Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-15603-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15603-3_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15602-6

  • Online ISBN: 978-3-319-15603-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics