Skip to main content

Echocardiographic Assessment of the Aorta and Coronary Arteries in Hypertensive Patients

  • Chapter
Assessment of Preclinical Organ Damage in Hypertension

Abstract

Evaluation of the aorta is a routine part of the standard echocardiographic examination. Changes of the aortic diameter are likely to reflect the effects of hypertension and atherosclerosis, but few data are available on their predictive value for cardiovascular events.

By using intravascular ultrasound in the coronary arteries, we can evaluate the lumen area and geometry, the wall tissue characteristics and thickness, the branch points, the degree of calcification, and the location and the extent of atherosclerotic lesions. Additionally, in hypertensive patients, the structural alterations of the intramyocardial arteries of the coronary tree contribute to the reduced coronary vasodilator capacity and to an increased minimal coronary resistance independently of the presence of left ventricular hypertrophy. Coronary flow reserve could be evaluated by invasive and noninvasive methods. Studies have documented a reduced coronary reserve in most of the hypertensive patients even in the absence of coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evangelista A, Flachskampf FA, Erbel R, Antonini-Canterin F, Nihoyannopoulos P, et al. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur J Echocardiogr. 2010;11:645–58.

    Article  PubMed  Google Scholar 

  2. Oh JK, Seward JB, Talik AJ. The echo manual. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  3. Pearson AC, Guo R, Orsinelli DA, Binkley PF, Pasierski TJ. Transesophageal echocardiographic assessment of the effects of age, gender, and hypertension on thoracic aortic wall size, thickness, and stiffness. Am Heart J. 1994;128(2):344–5.

    Article  CAS  PubMed  Google Scholar 

  4. Feigenbaum H, Echocardiography. 4th Ed., 1986. Lea & Febiger. Philadelphia.

    Google Scholar 

  5. Mirea O, Maffessanti F, Gripari P, Tamborini G, Muratori M, Fusini L, Claudia C, Fiorentini C, Plesea IE, Pepi M. Effects of aging and body size on proximal and ascending aorta and aortic arch: inner edge-to-inner edge reference values in a large adult population by two-dimensional transthoracic echocardiography. J Am Soc Echocardiogr. 2013;26(4):419–27.

    Article  PubMed  Google Scholar 

  6. Inga V, Michael J-H, Jürgen H, Eileen P, Christopher H, Dominik Daniel G, Jan Hinnerk H, Colin P, Hans-Heiner K, Carsten R. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:77.

    Article  Google Scholar 

  7. Stefanadis C, Dernellis J, Toutouzas P. Mechanical properties of the aorta determined by the pressure-diameter relation. Pathol Biol (Paris). 1999;47(7):696–704.

    CAS  Google Scholar 

  8. Khanafer K, Schlicht MS, Berguer R. How should we measure and report elasticity in aortic tissue? Eur J Vasc Endovasc Surg. 2013;45(4):332–9.

    Article  CAS  PubMed  Google Scholar 

  9. Schultz MG, Davies JE, Hardikar A, Pitt S, Moraldo M, Dhutia N, Hughes AD, Sharman JE. Aortic reservoir pressure corresponds to cyclic changes in aortic volume: physiological validation in humans. Arterioscler Thromb Vasc Biol. 2014;34(7):1597–603.

    Article  CAS  PubMed  Google Scholar 

  10. Heerman JR, Segers P, Roosens CD, Gasthuys F, Verdonck PR, Poelaert JI. Echocardiographic assessment of aortic elastic properties with automated border detection in an ICU: in vivo application of the arctangent Langewouters model. Am J Physiol Heart Circ Physiol. 2005;288(5):H2504–11.

    Article  CAS  PubMed  Google Scholar 

  11. Dahan M, Paillole C, Ferreira B, Gourgon R. Doppler echocardiographic study of the consequences of aging and hypertension on the left ventricle and aorta. Eur Heart J. 1990;11(Suppl G):39–45.

    Article  PubMed  Google Scholar 

  12. Kim M, Roman MJ, Cavallini MC, Schwartz JE, et al. Effect of hypertension on aortic root size and prevalence of aortic regurgitation. Hypertension. 1996;28:47–52.

    Article  CAS  PubMed  Google Scholar 

  13. Vasan RS, Larson MG, Levy D. Determinants of echocardiographic aortic root size The Framingham Heart Study. Circulation. 1995;91:734–40.

    Article  CAS  PubMed  Google Scholar 

  14. Tell GS, Rutan GH, Kronmal RA, Bild DE, Polak JF. Correlates of blood pressure in community-dwelling older adults. The Cardiovascular Health Study. Cardiovascular Health Study (CHS) Collaborative Research. Hypertension. 1994;23:59–67.

    Article  CAS  PubMed  Google Scholar 

  15. Aars H. Relationship between blood pressure and diameter of ascending aorta in normal and hypertensive rabbits. Acta Physiol Scand. 1969;75(3):397–405.

    Article  CAS  PubMed  Google Scholar 

  16. Bella JN, Wachtell K, Boman K, Palmieri V, Papademetriou V, Gerdts E, Aalto T, Olsen MH, Olofsson M, Dahlof B, Roman MJ, Devereux RB. Relation of left ventricular geometry and function to aortic root dilatation in patients with systemic hypertension and left ventricular hypertrophy (the LIFE study). Am J Cardiol. 2002;89:337–41.

    Article  PubMed  Google Scholar 

  17. Agmon Y, Khandheria BK, Meissner I, Schwartz GL, Sicks JD, Fought AJ, O’Fallon WM, Wiebers DO, Tajik AJ. Is aortic dilatation an atherosclerosis-related process? Clinical, laboratory, and transesophageal echocardiographic correlates of thoracic aortic dimensions in the population with implications for thoracic aortic aneurysm formation. J Am Coll Cardiol. 2003;42:1076–83.

    Article  PubMed  Google Scholar 

  18. Jondeau G, Boutouyrie P, Lacolley P, Laloux B, Dubourg O, Bourdarias JP, Laurent S. Central pulse pressure is a major determinant of ascending aorta dilation in Marfan syndrome. Circulation. 1999;99:2677–81.

    Article  CAS  PubMed  Google Scholar 

  19. Cuspidi C, Meani S, Valerio C, Esposito A, Sala C, Maisaidi M, Zanchetti A, Mancia G. Ambulatory blood pressure, target organ damage and aortic root size in never-treated essential hypertensive patients. J Hum Hypertens. 2007;21(7):531–8.

    CAS  PubMed  Google Scholar 

  20. Ohkubo T, Iami Y, Tsuji I, Nagai K, Watanabe N, Minami N, et al. Relation between nocturnal decline in blood pressure and mortality: the Ohasama Study. Am J Hypertens. 1997;10:1201–7.

    Article  CAS  PubMed  Google Scholar 

  21. Baguet JP, Minville C, Tamisier R, Roche F. Increased aortic root size is associated with nocturnal hypoxia and diastolic blood pressure in obstructive sleep apnea. Sleep. 2011;34(11):1605–7.

    PubMed Central  PubMed  Google Scholar 

  22. Lee LC, Torres MC, Khoo SM, Chong EY, Lau C. The relative impact of obstructive sleep apnea and hypertension on the structural and functional changes of the thoracic aorta. Sleep. 2010;33(9):1173–6.

    PubMed Central  PubMed  Google Scholar 

  23. Gardin JM, Arnold AM, Polak J, Jackson S, Smith V, Gottdiener J. Usefulness of aortic root dimension in persons ≥ 65 years of age in predicting heart failure, stroke, cardiovascular mortality, all-cause mortality and acute myocardial infarction. Am J Cardiol. 2006;2:270–5.

    Article  Google Scholar 

  24. Guize L, Ducimetiere P, Benetos A, Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.

    Article  PubMed  Google Scholar 

  25. Kongola K, Coppack SW, Gosling RG, Lehmann ED, Hopkins KD, Rawesh A, Joseph RC. Relation between number of cardiovascular risk factors/events and noninvasive doppler ultrasound assessments of aortic compliance. Hypertension. 1998;32:565–9.

    Article  PubMed  Google Scholar 

  26. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens. 2001;19(5):921–30.

    Article  CAS  PubMed  Google Scholar 

  27. Rizzoni D, Palombo C, Porteri E, Muiesan ML, Kozakova M, La Canna G, Nardi M, Guelfi D, Salvetti M, Morizzo C, Vittone F, Rosei EA. Relationships between coronary flow vasodilator capacity and small artery remodelling in hypertensive patients. J Hypertens. 2003;21(3):625–31.

    Article  CAS  PubMed  Google Scholar 

  28. Erdogan D, Yildirim I, Ciftci O, Ozer I, Caliskan M, Gullu H, Muderrisoglu H. Effects of normal blood pressure, prehypertension, and hypertension on coronary microvascular function. Circulation. 2007;115(5):593–4. Nitenberg A, Antony I. Epicardial coronary arteries are not adequately sized in hypertensive patients. J Am Coll Cardiol. 1996;27(1):115–23.

    Article  PubMed  Google Scholar 

  29. Kozakova M, Paterni M, Bartolomucci F, Morizzo C, Rossi G, Galetta F, Palombo C. Epicardial coronary artery size in hypertensive and physiologic left ventricular hypertrophy. Am J Hypertens. 2007;20(3):279–84.

    Article  PubMed  Google Scholar 

  30. Struijker Boudier HA, le Noble JL, Messing MW, Huijberts MS, le Noble FA, van Essen H. The microcirculation and hypertension. J Hypertens Suppl. 1992;10(7):S147–56.

    CAS  PubMed  Google Scholar 

  31. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104(6):735–40.

    Article  CAS  PubMed  Google Scholar 

  32. Schoenhagen P, Ziada KM, Vince DG, Nissen SE, Tuzcu EM. Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis. J Am Coll Cardiol. 2001;38(2):297–306. © 2001 by the American College of Cardiology.

    Article  CAS  PubMed  Google Scholar 

  33. Davies MJ. Glagovian remodelling, plaque composition, and stenosis generation. Heart. 2000;84:461–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Achenbach S, Ropers D, Hoffmann U, MacNeill B, Baum U, Pohle K, Brady TJ, Pomerantsev E, Ludwig J, Flachskampf FA, Wicky S, Jang I-k, Daniel WG. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol. 2004;43(5):842–7. © 2004 by the American College of Cardiology Foundation.

    Article  PubMed  Google Scholar 

  35. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78:1157–66.

    Article  CAS  PubMed  Google Scholar 

  36. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Chuang YC, DeFalco RA, Leon MB. Limitations of angiography in the assessment of plaque distribution in coronary artery disease. A systematic study of target lesion eccentricity in 1446 lesions. Circulation. 1996;93:924–31.

    Article  CAS  PubMed  Google Scholar 

  37. Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation. 1993;88:993–1003.

    Article  CAS  PubMed  Google Scholar 

  38. Hodgson JMB, Graham SP, Savakus AD, Dame SG, Stephens DN, Dhillon PS, Brands D, Sheehan H, Eberle MJ. Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imaging. 1989;4(2–4):187–93. Kluwer Academic Publishers. Printed in the Netherlands.

    Article  CAS  PubMed  Google Scholar 

  39. Roelandt JRTC, Serruys PW, Bom N, Gussenhoven WG, Lancee CT, ten Hoff H. Intravascular real-time, two-dimensional echocardiography. Int J Card Imaging. 1989;4:63–7. Kluwer Academic Publishers. Primed in the Netherlands.

    Article  CAS  PubMed  Google Scholar 

  40. Nitenberg A, Antony I. Epicardial coronary arteries are not adequately sized in hypertensive patients. J Am Coll Cardiol. 1996;27(1):115–23.

    Article  CAS  PubMed  Google Scholar 

  41. Kern MJ, Lerman A, Bech JW, De Bruyne B, Eeckhout E, Fearon WF, Higano ST, Lim MJ, Meuwissen M, Piek JJ, Pijls NH, Siebes M, Spaan JA, American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation. 2006;114(12):1321–4.

    Article  PubMed  Google Scholar 

  42. Kiviniemi T. Assessment of coronary blood flow and the reactivity of the microcirculation non-invasively with transthoracic echocardiography. Clin Physiol Funct Imaging. 2008;28:145–55.

    Article  PubMed  Google Scholar 

  43. Brush Jr JE, Cannon 3rd RO, Schenke WH, Bonow RO, Leon MB, Maron BJ, Epstein SE. Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med. 1988;319(20):1302–7.

    Article  PubMed  Google Scholar 

  44. Reis SE, Holubkov R, Lee JS, Sharaf B, Reichek N, Rogers WJ, Walsh EG, Fuisz AR, Kerensky R, Detre KM, Sopko G, Pepine CJ. Coronary flow velocity response to adenosine characterizes coronary microvascular function in women with chest pain and no obstructive coronary disease. Results from the pilot phase of the Women’s Ischemia Syndrome Evaluation (WISE) study. J Am Coll Cardiol. 1999;33(6):1469–75.

    Article  CAS  PubMed  Google Scholar 

  45. Camici PG. Is the chest pain in cardiac syndrome X due to subendocardial ischaemia? Eur Heart J. 2007;28(13):1539–40.

    Article  PubMed  Google Scholar 

  46. Hamasaki S, Al Suwaidi J, Higano ST, Miyauchi K, Holmes Jr DR, Lerman A. Attenuated coronary flow reserve and vascular remodeling in patients with hypertension and left ventricular hypertrophy. J Am Coll Cardiol. 2000;35(6):1654–60.

    Article  CAS  PubMed  Google Scholar 

  47. Kallikazaros I, Tsioufis C, Sideris S, Stefanadis C, Toutouzas P. Carotid artery disease as a marker for the presence of severe coronary artery disease in patients evaluated for chest pain. Stroke. 1999;30(5):1002–7.

    Article  CAS  PubMed  Google Scholar 

  48. Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, Clegg LX. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol. 1997;146(6):483–94.

    Article  CAS  PubMed  Google Scholar 

  49. Amato M, Montorsi P, Ravani A, Oldani E, Galli S, Ravagnani PM, Tremoli E, Baldassarre D. Carotid intima-media thickness by B-mode ultrasound as surrogate of coronary atherosclerosis: correlation with quantitative coronary angiography and coronary intravascular ultrasound findings. Eur Heart J. 2007;28(17):2094–101. Epub 2007 Jun 27.

    Article  PubMed  Google Scholar 

  50. Campuzano R, Moya JL, Garcia-Lledo A, Tomas JP, Ruiz S, Megias A, Balaguer J, Asín E. Endothelial dysfunction, intima-media thickness and coronary reserve in relation to risk factors and Framingham score in patients without clinical atherosclerosis. J Hypertens. 2006;24(8):1581–8.

    Article  CAS  PubMed  Google Scholar 

  51. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, Akasaka T, Costa M, Guagliumi G, Grube E, Ozaki Y, Pinto F, Serruys PW, Expert’s OCT Review Document. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401–15.

    Article  PubMed  Google Scholar 

  52. Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K. Assessment of coronary intima–media thickness by optical coherence tomography: comparison with intravascular ultrasound. Circ J. 2005;69(8):903–7.

    Article  PubMed  Google Scholar 

  53. Galderisi M, D’Errico A, Sidiropulos M, Innelli P, de Divitiis O, de Simone G. Nebivolol induces parallel improvement of left ventricular filling pressure and coronary flow reserve in uncomplicated arterial hypertension. J Hypertens. 2009;27(10):2108–15.

    Article  CAS  PubMed  Google Scholar 

  54. Tomás JP, Moya JL, Barrios V, Campuzano R, Guzman G, Megías A, Ruiz-Leria S, Catalán P, Marfil T, Tarancón B, Muriel A, García-Lledó A. Effect of candesartan on coronary flow reserve in patients with systemic hypertension. J Hypertens. 2006;24(10):2109–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas P. Tsioufis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsioufis, C.P. (2015). Echocardiographic Assessment of the Aorta and Coronary Arteries in Hypertensive Patients. In: Agabiti Rosei, E., Mancia, G. (eds) Assessment of Preclinical Organ Damage in Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-15603-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15603-3_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15602-6

  • Online ISBN: 978-3-319-15603-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics