Skip to main content

Revealing Subsurface Vibrational Modes by Atomic-Resolution Damping Force Spectroscopy

  • Chapter
  • First Online:
Noncontact Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

  • 4008 Accesses

Abstract

Damping of the oscillating cantilever in dynamic atomic force microscopy contains valuable information about the local vibrational structure and elastic compliance of the substrate. We review Damping Force Spectroscopy which has successfully visualized atomically-resolved damping in supramolecular assemblies, capable of identifying the location and packing of inner molecules as well as local excitations of vibrational modes, dependent on outer molecules with specific geometry. We introduce the physical origin of damping in a microscopic model and quantitative interpretation of the practical observations by calculating the vibrational spectrum and damping of inner metallofullerene Dy@C\(_{82}\) molecules inside carbon nanotubes with different diameters using ab initio total energy and molecular dynamics calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.C. Stipe, M.A. Rezaei, W. Ho, Science 280, 1732–1735 (1998)

    Article  ADS  Google Scholar 

  2. G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930–933 (1986)

    Article  ADS  Google Scholar 

  3. K. Yamanaka, H. Ogiso, O. Kolosov, Appl. Phys. Lett. 64, 178–180 (1994)

    Article  ADS  Google Scholar 

  4. O.V. Kolosov, M.R. Castell, C.D. Marsh, G.A.D. Briggs, T.I. Kamins, R.S. Williams, Phys. Rev. Lett. 81, 1046–1049 (1998)

    Article  ADS  Google Scholar 

  5. M. Ashino, R. Wiesendanger, A.N. Khlobystov, S. Berber, D. Tománek, Phys. Rev. Lett. 102, 195503 (2009)

    Article  ADS  Google Scholar 

  6. B.W. Smith, M. Monthioux, D.E. Luzzi, Nature 396, 323–324 (1998)

    Article  ADS  Google Scholar 

  7. D.A. Britz, A.N. Khlobystov, Chem. Soc. Rev. 35, 637–659 (2006)

    Article  Google Scholar 

  8. A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Topics in Applied Physics, vol. 111 (Springer, Berlin, 1992)

    Google Scholar 

  9. R. Kitaura, H. Shinohara, Chem. Asian J. 1, 646–655 (2006)

    Article  Google Scholar 

  10. T. Shimada, T. Okazaki, R. Taniguchi, T. Sugai, H. Shinohara, K. Suenaga et al., Appl. Phys. Lett. 81, 4067–4069 (2002)

    Article  ADS  Google Scholar 

  11. T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668–673 (1991)

    Article  ADS  Google Scholar 

  12. M. Ashino, A. Schwarz, T. Behnke, R. Wiesendanger, Phys. Rev. Lett. 93, 136101 (2004)

    Article  ADS  Google Scholar 

  13. N. Sasaki, M. Tsukada, Jpn. J. Appl. Phys. 39, L1334 (2000)

    Article  ADS  Google Scholar 

  14. L.N. Kantorovich, T. Trevethan, Phys. Rev. Lett. 93, 236102 (2004)

    Article  ADS  Google Scholar 

  15. V. Percec, A.E. Dulcey, V.S.K. Balagarusamy, Y. Miura, J. Smidrkal, M. Peterca et al., Nature 430, 764–768 (2004)

    Article  ADS  Google Scholar 

  16. J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, Germany, 1995)

    Google Scholar 

  17. D. Fiedler, D.H. Leung, R.G. Bergman, K.N. Raymond, Acc. Chem. Res. 38, 351–360 (2005)

    Article  Google Scholar 

  18. M. Hodak, L.A. Girifalco, Chem. Phys. Lett. 350, 450–411 (2001)

    Article  Google Scholar 

  19. M. Yoon, S. Berber, D. Tománek, Phys. Rev. B 71, 155406 (2005)

    Article  ADS  Google Scholar 

  20. I.V. Krive, R.I. Shekhter, M. Jonson, Low Temp. Phys. 32, 887–905 (2006)

    Article  ADS  Google Scholar 

  21. P.W. Chiu, G. Gu, G.T. Kim, G. Philipp, S. Roth, S.F. Yang et al., Appl. Phys. Lett. 79, 3845–3847 (2001)

    Google Scholar 

  22. K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara et al., Phys. Rev. Lett. 85, 5384–5387 (2000)

    Article  ADS  Google Scholar 

  23. K. Suenaga, R. Taniguchi, T. Shimada, T. Okazaki, H. Shinohara, S. Iijima, Nano Lett. 3, 1395–1398 (2003)

    Article  ADS  Google Scholar 

  24. J. Lee, H. Kim, S.-J. Kahng, G. Kim, Y.-W. Son, J. Ihm et al., Nature 415, 1005–1008 (2002)

    Article  ADS  Google Scholar 

  25. K. Kimura, N. Ikeda, Y. Maruyama, T. Okazaki, H. Shinohara, S. Bandow et al., Chem. Phys. Lett. 379, 340–344 (2003)

    Article  ADS  Google Scholar 

  26. M. Hodak, L.A. Girifalco, Phys. Rev. B 64, 035407 (2001)

    Article  ADS  Google Scholar 

  27. D. Obergfell, J.C. Meyer, M. Haluska, A.N. Khlobystov, S. Yang, L. Fan et al., Phys. Stat. Sol. b 243, 3430–3434 (2006)

    Article  ADS  Google Scholar 

  28. M. Ashino, D. Obergfell, M. Haluska, S. Yang, A.N. Khlobystov, S. Roth et al., Nat. Nanotechnol. 3, 337–341 (2008)

    Article  ADS  Google Scholar 

  29. M.-F. Yu, T. Kowalewski, R.S. Ruoff, Phys. Rev. Lett. 85, 1456–1459 (2000)

    Article  ADS  Google Scholar 

  30. L. Shen, J. Li, Phys. Rev. B 69, 045414 (2004)

    Article  ADS  Google Scholar 

  31. S. Berber, Y.-K. Kwon, and David Tománek, Phys. Rev. Lett. 84, 4613–4616 (2000)

    Google Scholar 

Download references

Acknowledgments

We appreciate Siegmar Roth and Dirk Obergfell for useful discussions and for sample preparation and David Tománek for theoretical support of our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ashino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ashino, M., Wiesendanger, R. (2015). Revealing Subsurface Vibrational Modes by Atomic-Resolution Damping Force Spectroscopy. In: Morita, S., Giessibl, F., Meyer, E., Wiesendanger, R. (eds) Noncontact Atomic Force Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15588-3_8

Download citation

Publish with us

Policies and ethics