Skip to main content

Simulating Solid-Liquid Interfaces in Atomic Force Microscopy

  • Chapter
  • First Online:
Noncontact Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

  • 4048 Accesses

Abstract

In this chapter, we will cover the main approaches taken to model AFM in liquids in a variety of different systems, discussing the advantages and problems of different methods, outlining the main issues to take into account in general, while also attempting to build a perspective for the future of the field. We hope this will provide a fundamental platform of understanding for future Atomic Force Microscopy studies of solid-liquid interfaces at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Kada, F. Kienberger, P. Hinterdorfer, Atomic force microscopy in bionanotechnology. Nano Today 3, 12–19 (2008)

    Article  Google Scholar 

  2. D.J. Müller, Y.F. Dufrêne, Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3(5), 261–269 (2008)

    Article  Google Scholar 

  3. H.J. Güntherodt, D. Anselmetti, E. Meyer, Forces in Scanning Probe Methods (Kluwer, Dordrecht, 1995)

    Google Scholar 

  4. S. Morita, R. Wiesendanger, E. Meyer, Noncontact Atomic Force Microscopy (Springer, Berlin, 2002)

    Book  Google Scholar 

  5. F.J. Giessibl, Atomic-force microscopy in ultrahigh-vacuum. Jpn. J. Appl. Phys. 33(6B), 3726–3734 (1994)

    Article  ADS  Google Scholar 

  6. A.L. Shluger, A.I. Livshits, A.S. Foster, C.R.A. Catlow, Models of image contrast in scanning force microscopy on insulators. J. Phys. Condens. Matter 11(26), R295–R322 (1999)

    Article  ADS  Google Scholar 

  7. D.A. Bonnell, Probe Microscopy and Spectroscopy: Theory and Applications (Wiley, New York, 2000)

    Google Scholar 

  8. F.J. Giessibl, Atomic resolution of the silicon (111)-(7\(\times \)7) surface by atomic force microscopy. Science 267(5194), 68–71 (1995)

    Article  ADS  Google Scholar 

  9. F. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)

    Article  ADS  Google Scholar 

  10. Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, O. Custance, Chemical identification of individual surface atoms by atomic force microscopy. Nature 446(7131), 64–67 (2007)

    Article  ADS  Google Scholar 

  11. Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez, S. Morita, Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322(5900), 413–417 (2008)

    Article  ADS  Google Scholar 

  12. L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944), 1110–1114 (2009)

    Article  ADS  Google Scholar 

  13. L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitian, D. Pena, A. Gourdon, G. Meyer, Bond-order discrimination by atomic force microscopy. Science 337(6100), 1326–1329 (2012)

    Google Scholar 

  14. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  ADS  Google Scholar 

  15. G. Binnig, C. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate, Atomic resolution with atomic force microscope. Europhys. Lett. 3(12), 1281–1286 (1987)

    Article  ADS  Google Scholar 

  16. F. Ohnesorge, G. Binnig, True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260(5113), 1451 (1993)

    Article  ADS  Google Scholar 

  17. Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. 61(10), 4723 (1987)

    Article  ADS  Google Scholar 

  18. F.J. Giessibl, H. Bielefeldt, S. Hembacher, J. Mannhart, Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy. Appl. Surf. Sci. 140, 352–357 (1999)

    Article  ADS  Google Scholar 

  19. T. Uchihashi, M.J. Higgins, S. Yasuda, S.P. Jarvis, S. Akita, Y. Nakayama, J.E. Sader, Quantitative force measurements in liquid using frequency modulation atomic force microscopy. Appl. Phys. Lett. 85(16), 3575 (2004)

    Article  ADS  Google Scholar 

  20. T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, True molecular resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 86(19), 193108 (2005)

    Article  ADS  Google Scholar 

  21. T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 87(3), 034101 (2005)

    Article  ADS  Google Scholar 

  22. T. Fukuma, M. Higgins, S. Jarvis, Direct imaging of lipid-ion network formation under physiological conditions by frequency modulation atomic force microscopy. Phys. Rev. Lett. 98(10), 106101 (2007)

    Article  ADS  Google Scholar 

  23. S. Rode, N. Oyabu, K. Kobayashi, H. Yamada, A. Kühnle, True atomic-resolution imaging of (\(10\bar{1}4\)) calcite in aqueous solution by frequency modulation atomic force microscopy. Langmuir 25(5), 2850–2853 (2009)

    Article  Google Scholar 

  24. T. Fukuma, Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy. Sci. Tech. Adv. Mater. 11(3), 033003 (2010)

    Article  MathSciNet  Google Scholar 

  25. B.W. Hoogenboom, H.J. Hug, Y. Pellmont, S. Martin, P.L.T.M. Frederix, D. Fotiadis, A. Engel, Quantitative dynamic-mode scanning force microscopy in liquid. Appl. Phys. Lett. 88(19), 193109 (2006)

    Google Scholar 

  26. T. Fukuma, K. Onishi, N. Kobayashi, A. Matsuki, H. Asakawa, Atomic-resolution imaging in liquid by frequency modulation atomic force microscopy using small cantilevers with megahertz-order resonance frequencies. Nanotechnology 23, 135706 (2012)

    Article  ADS  Google Scholar 

  27. W.A. Hofer, A.S. Foster, A.L. Shluger, Theories of scanning probe microscopy at the atomic scale. Rev. Mod. Phys. 75, 1287–1331 (2003)

    Article  ADS  Google Scholar 

  28. A.S. Foster, W.A. Hofer, Scanning Probe Microscopes: Atomic Scale Engineering by Forces and Currents (Springer, New York, 2006)

    Google Scholar 

  29. C. Barth, A.S. Foster, C.R. Henry, A.L. Shluger, Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv. Mater. 23(4), 477–501 (2011)

    Google Scholar 

  30. R. Perez, M. Payne, I. Stich, K. Terakura, Role of covalent tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Phys. Rev. Lett. 78(4), 678–681 (1997)

    Article  ADS  Google Scholar 

  31. I. Stich, J. Tobik, R. Perez, K. Terakura, S. Ke, Tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Prog. Surf. Sci. 64(3–8), 179–191 (2000)

    Article  ADS  Google Scholar 

  32. N. Sasaki, H. Aizawa, M. Tsukada, Theoretical simulation of noncontact AFM images of Si(111) 33-Ag surface based on Fourier expansion method. Appl. Surf. Sci. 157(4), 367–372 (2000)

    Article  ADS  Google Scholar 

  33. A. Foster, A. Gal, J. Gale, Y. Lee, R. Nieminen, A. Shluger, Interaction of silicon dangling bonds with insulating surfaces. Phys. Rev. Lett. 92(3), 036101 (2004)

    Article  ADS  Google Scholar 

  34. N. Oyabu, P. Pou, Y. Sugimoto, P. Jelinek, M. Abe, S. Morita, R. Perez, O. Custance, Single atomic contact adhesion and dissipation in dynamic force microscopy. Phys. Rev. Lett. 96(10), 106101 (2006)

    Article  ADS  Google Scholar 

  35. O. Custance, R. Perez, S. Morita, Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4(12), 803–810 (2009)

    Article  ADS  Google Scholar 

  36. M. Rasmussen, A. Foster, B. Hinnemann, F. Canova, S. Helveg, K. Meinander, N. Martin, J. Knudsen, A. Vlad, E. Lundgren, A. Stierle, F. Besenbacher, J. Lauritsen, Stable cation inversion at the MGAl\(_{2}\)O\(_{4}\)(100) surface. Phys. Rev. Lett. 107(3), 036102 (2011)

    Google Scholar 

  37. G. Teobaldi, K. Lämmle, T. Trevethan, M. Watkins, A. Schwarz, R. Wiesendanger, A.L. Shluger, Chemical resolution at ionic crystal surfaces using dynamic atomic force microscopy with metallic tips. Phys. Rev. Lett. 106, 216102 (2011)

    Google Scholar 

  38. S. Kawai, A.S. Foster, F.F. Canova, H. Onodera, S.i. Kitamura, E. Meyer, Atom manipulation on an insulating surface at room temperature, Nat. Commun. 5, 4403 (2014)

    Google Scholar 

  39. M. Ondráček, P. Pou, V. Rozsíval, C. Gonzalez, P. Jelinek, R. Perez, Forces and currents in carbon nanostructures: are we imaging atoms? Phys. Rev. Lett. 106(17), 176101 (2011)

    Article  ADS  Google Scholar 

  40. J. Bamidele, S.H. Lee, Y. Kinoshita, R. Turanský, Y. Naitoh, Y.J. Li, Y. Sugawara, I. Stich, L. Kantorovich, Vertical atomic manipulation with dynamic atomic-force microscopy without tip change via a multi-step mechanism. Nat. Commun. 5, 4476 (2014)

    Google Scholar 

  41. A.M. Sweetman, S.P. Jarvis, H. Sang, I. Lekkas, P. Rahe, Y. Wang, J. Wang, N.R. Champness, L. Kantorovich, P. Moriarty, Mapping the force field of a hydrogen-bonded assembly. Nat. Commun. 5, 3931 (2014)

    Article  ADS  Google Scholar 

  42. N. Moll, L. Gross, F. Mohn, A. Curioni, G. Meyer, A simple model of molecular imaging with noncontact atomic force microscopy. New J. Phys. 14(8), 083023 (2012)

    Article  ADS  Google Scholar 

  43. D.Z. Gao, J. Grenz, M.B. Watkins, F. Federici, Canova, A. Schwarz, R. Wiesendanger, A.L. Shluger, Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms. ACS nano 8(5), 5339–5351 (2014)

    Google Scholar 

  44. J.C. Chen, B. Reischl, P. Spijker, N. Holmberg, K. Laasonen, A.S. Foster, Ab initio kinetic monte carlo simulations of dissolution at the NACl-water interface. Phys. Chem. Chem. Phys. 16, 22545–22554 (2014)

    Google Scholar 

  45. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)

    MATH  Google Scholar 

  46. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Computational Science, Academic Press, San Diego, 2002)

    Google Scholar 

  47. M. Watkins, A.L. Shluger, Mechanism of contrast formation in atomic force microscopy in water. Phys. Rev. Lett. 105(19), 196101 (2010)

    Article  ADS  Google Scholar 

  48. K. Kimura, S. Ido, N. Oyabu, K. Kobayashi, Y. Hirata, T. Imai, H. Yamada, Visualizing water molecule distribution by atomic force microscopy. J. Chem. Phys. 132(19), 194705 (2010)

    Article  ADS  Google Scholar 

  49. M. Harada, M. Tsukada, Tip-sample interaction force mediated by water molecules for AFM in water: three-dimensional reference interaction site model theory. Phys. Rev. B 80(3), 035414 (2010)

    Article  ADS  Google Scholar 

  50. M. Tsukada, N. Watanabe, M. Harada, K. Tagami, Theoretical simulation of noncontact atomic force microscopy in liquids. J. Vac. Sci. Tech. B. 28(3), C4C1–C4C4 (2010)

    Google Scholar 

  51. B. Reischl, M. Watkins, A.S. Foster, Free energy approaches for modeling atomic force microscopy in liquids. J. Chem. Theory Comput. 9(1), 600–608 (2013)

    Article  Google Scholar 

  52. D. Argyris, A. Phan, A. Striolo, P.D. Ashby, Hydration structure at the \(\alpha \)-Al\({}_2\)O\({}_3\)(0001) surface: insights from experimental atomic force spectroscopic data and atomistic molecular dynamics simulations. J. Phys. Chem. C 117(20), 10433–10444 (2013)

    Google Scholar 

  53. M. Watkins, B. Reischl, A simple approximation for forces exerted on an AFM tip in liquid. J. Chem. Phys. 138(15), 154703 (2013)

    Article  ADS  Google Scholar 

  54. K.i. Amano, K. Suzuki, T. Fukuma, O. Takahashi, H. Onishi, The relationship between local liquid density and force applied on a tip of atomic force microscope: a theoretical analysis for simple liquids. J. Chem. Phys. 139(22), 224710 (2013)

    Google Scholar 

  55. T. Fukuma, Y. Ueda, S. Yoshioka, H. Asakawa, Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 104(1), 016101 (2010)

    Article  ADS  Google Scholar 

  56. T. Hiasa, K. Kimura, H. Onishi, M. Ohta, K. Watanabe, R. Kokawa, N. Oyabu, K. Kobayashi, H. Yamada, Aqueous solution structure over \(\alpha \)-Al\({}_2\)O\({}_3\)(\(01\bar{1}2\)) probed by frequency-modulation atomic force microscopy. J. Phys. Chem. C 114(49), 21423–21426 (2010)

    Google Scholar 

  57. J.G. Catalano, C. Park, Z. Zhang, P. Fenter, Termination and water adsorption at the \(\alpha \)-Al\({}_2\)O\({}_3\) (012)-aqueous solution interface. Langmuir 22(10), 4668–4673 (2006)

    Google Scholar 

  58. L. Cheng, P. Fenter, K.L. Nagy, M.L. Schlegel, N.C. Sturchio, Molecular-scale density oscillations in water adjacent to a mica surface. Phys. Rev. Lett. 87, 156103 (2001)

    Article  ADS  Google Scholar 

  59. J.D. Eaves, J.J. Loparo, C.J. Fecko, S.T. Roberts, A. Tokmakoff, P.L. Geissler, Hydrogen bonds in liquid water are broken only fleetingly. Proc. Natl. Acad. Sci. USA 102(37), 13019–13022 (2005)

    Article  ADS  Google Scholar 

  60. M. Watkins, M.L. Berkowitz, A.L. Shluger, Role of water in atomic resolution AFM in solutions. Phys. Chem. Chem. Phys. 13(27), 12584–12594 (2011)

    Article  Google Scholar 

  61. K. Voïtchovsky, J.J. Kuna, S.A. Contera, E. Tosatti, F. Stellacci, Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. Nat. Nanotechnol. 5(6), 401–405 (2010)

    Article  ADS  Google Scholar 

  62. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987)

    Google Scholar 

  63. G.M. Torrie, J.P. Valleau, Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 28, 578–581 (1974)

    Article  ADS  Google Scholar 

  64. S. Kumar, D. Bouzida, R.H. Swendsen, P.A. Kollman, J.M. Rosenberg, The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992)

    Article  Google Scholar 

  65. R.W. Zwanzig, Statistical mechanical theory of transport processes. VII. The coefficient of thermal conductivity of monatomic liquids. J. Chem. Phys. 22(8), 1420–1426 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  66. A.D. MacKerell Jr, D. Bashford, M. Bellott, R.L. Dunbrack Jr, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher III, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Google Scholar 

  67. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)

    Article  Google Scholar 

  68. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Google Scholar 

  69. R.T. Cygan, J.J. Liang, A.G. Kalinichev, Molecular models of hydroxide. oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108, 1255–1266 (2004)

    Google Scholar 

  70. D.R. Heine, A.R. Rammohan, J. Balakrishnan, Atomistic simulations of the interaction between lipid bilayers and substrates 33, 391–397 (2007)

    Google Scholar 

  71. C.M. Payne, X. Zhao, L. Vlcek, P.T. Cummings, Molecular dynamics simulation of ss-dna translocation between copper nanoelectrodes incorporating electrode charge. Dynamics 112, 1712–1717 (2008)

    Google Scholar 

  72. A.A. Skelton, P. Fenter, J.D. Kubicki, D.J. Wesolowski, P.T. Cummings, Simulations of the quartz(1011)/water interface: a comparison of classical force fields. Ab initio molecular dynamics, and X-ray reflectivity experiments. J. Phys. Chem. B 115, 2076–2088 (2011)

    Google Scholar 

  73. S. Kang, T. Huynh, Z. Xia, Y. Zhang, H. Fang, G. Wei, R. Zhou, Hydrophobic interactions drives surface-assisted epitaxial assembly of amyloid-like. Peptides 135, 3150–3157 (2013)

    Google Scholar 

  74. P. Raiteri, J.D. Gale, D. Quigley, P.M. Rodger, Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution: a new model for the calcite-water interface. J. Phys. Chem. C 114(13), 5997–6010 (2010)

    Article  Google Scholar 

  75. P. Raiteri, J.D. Gale, Water is the key to nonclassical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc. 132(49), 17623–17634 (2010)

    Article  Google Scholar 

  76. P. Fenter, S. Kerisit, P. Raiteri, J.D. Gale, Is the calcite-water interface understood? Direct comparisons of molecular dynamics simulations with specular X-ray reflectivity data. J. Phys. Chem. C 117(10), 5028–5042 (2013)

    Google Scholar 

  77. B. Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 101(1–3), 219–260 (2002)

    Article  Google Scholar 

  78. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    Google Scholar 

  79. K. Toukan, A. Rahman, Molecular-dynamics study of atomic motions in water. Phys. Rev. B 31, 2643–2648 (1985)

    Google Scholar 

  80. K.P. Jensen, W.L. Jorgensen, Halide, Ammonium, and Alkali metal ion parameters for modeling aqueous solutions. J. Chem. Theory Comput. 2, 1499–1509 (2006)

    Article  Google Scholar 

  81. I.S. Joung, T.E. Cheatham III, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008)

    Google Scholar 

  82. T. Hiasa, K. Kimura, H. Onishi, Hydration of hydrophilic thiolate monolayers visualized by atomic force microscopy. Phys. Chem. Chem. Phys. 14(23), 8419–8424 (2012)

    Article  Google Scholar 

  83. M. Watkins, A.L. Shluger, Properties of SiO\({}_2\) clusters in aqueous solution from first principles molecular dynamics (2013) (in preparation)

    Google Scholar 

  84. J.P. Cleveland, T.E. Schäffer, P.K. Hansma, Probing oscillatory hydration potentials using thermal-mechanical noise in an atomic-force microscope. Phys. Rev. B 52(12), 8692–8695 (1995)

    Article  ADS  Google Scholar 

  85. N. Kobayashi, S. Itakura, H. Asakawa, T. Fukuma, Atomic-scale processes at the fluorite-water interface visualized by frequency modulation atomic force microscopy. J. Phys. Chem. C 117(46), 24388–24396 (2013)

    Article  Google Scholar 

  86. C. Eun, M.L. Berkowitz, Origin of the hydration force: water-mediated interaction between two hydrophilic plates. J. Phys. Chem. B 113(40), 13222–13228 (2009)

    Article  Google Scholar 

  87. J. Schütte, P. Rahe, L. Tröger, S. Rode, R. Bechstein, M. Reichling, A. Kühnle, Clear signature of the (2\(\times \)1) reconstruction of calcite (\(10\bar{1}4\)). Langmuir 26(11), 8295–8300 (2010)

    Article  Google Scholar 

  88. H. Imada, K. Kimura, H. Onishi, Water and 2-propanol structured on calcite (104) probed by frequency-modulation atomic force microscopy. Langmuir 29(34), 10744–10751 (2013)

    Article  Google Scholar 

  89. J. Tracey, F. Federici Canova, O. Keisanen, A.S. Foster, Flexible and efficient virtual scanning probe microscope (2014) (in preparation)

    Google Scholar 

  90. M. Ricci, P. Spijker, F. Stellacci, J.F. Molinari, K. Voïtchovsky, Langmuir 29(7), 2207–2216 (2013)

    Article  Google Scholar 

  91. D.J. Cooke, J.A. Elliott, Atomistic simulations of calcite nanoparticles and their interaction with water. J. Chem. Phys. 127(10), 104706 (2007)

    Article  ADS  Google Scholar 

  92. T. Fukuma, N. Kobayashi, B. Reischl, P. Spijker, F. Federici Canova, K. Miyazawa, A.S. Foster, Direct imaging of three-dimensional hydration structures at solid-liquid interfaces with subnanometer resolution (2014) (in preparation)

    Google Scholar 

  93. R. Nishioka, T. Hiasa, K. Kimura, H. Onishi, J. Phys. Chem. C 117(6), 2939–2943 (2013)

    Article  Google Scholar 

  94. P. Spijker, T. Hiasa, T. Musso, R. Nishioka, H. Onishi, A.S. Foster, Understanding the interface of liquids with an organic crystal surface from atomistic simulations and AFM experiments. J. Phys. Chem. C 118(4), 2058–2066 (2014)

    Article  Google Scholar 

  95. S.C. Abrahams, J.M. Robertson, The crystal structure of p-nitroaniline, NO\(_2\).C\(_6\)H\(_4\).NH\(_2\), Acta Cryst. 1, 252–259 (1948)

    Google Scholar 

  96. D.C. Forbes, K.J. Weaver, Bronsted acidic ionic liquids: the dependence on water of the fischer esterification of acetic acid and ethanol. Ionic liquids as promising alternative media for organic synthesis and catalysis, J. Mol. Cat. A, 214 (1):129–132 (2004)

    Google Scholar 

  97. J.S. Wilkes, P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis (Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, 2008)

    Google Scholar 

  98. T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99(8), 2071–2084 (1999)

    Article  Google Scholar 

  99. T. Moriguchi, T. Yanagi, M. Kunimori, T. Wada, M. Sekine, Synthesis and properties of aminoacylamido-AMP: chemical optimization for the construction of an N-Acyl phosphoramidate linkage, J. Org. Chem. 65(24), 8229–8238 (2000) (pMID: 11101378)

    Google Scholar 

  100. R.D. Rogers, K.R. Seddon (eds.), Ionic Liquids as Green Solvents (American Chemical Society, Washington, D.C., 2003)

    Google Scholar 

  101. N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)

    Article  Google Scholar 

  102. G. Feng, J.S. Zhang, R. Qiao, Microstructure and capacitance of the electrical double layers at the interface of ionic liquids and planar electrodes. J. Phys. Chem. C 113(11), 4549–4559 (2009)

    Article  Google Scholar 

  103. A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi, Ionic liquids for hybrid supercapacitors. Electrochem. Commun. 6(6), 566–570 (2004)

    Article  Google Scholar 

  104. T. Kuboki, T. Okuyama, T. Ohsaki, N. Takami, Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sour. 146, 766–769 (2005)

    Article  ADS  Google Scholar 

  105. M. Park, H. Sun, H. Lee, J. Lee, J. Cho, Lithium-air batteries: survey on the current status and perspectives towards automotive applications from a battery industry standpoint. Adv. Energy Mater. 2(7), 780–800 (2012)

    Article  Google Scholar 

  106. T. Tsuda, N. Nemoto, K. Kawakami, E. Mochizuki, S. Kishida, T. Tajiri, T. Kushibiki, S. Kuwabata, SEM observation of wet biological specimens pretreated with room-temperature ionic liquid. Chem. Bio. Chem. 12(17), 2547–2550 (2011)

    Google Scholar 

  107. A.E. Somers, P.C. Howlett, D.R. MacFarlane, M. Forsyth, A review of ionic liquid lubricants. Lubricants 1(1), 3–21 (2013)

    Article  Google Scholar 

  108. M. Palacio, B. Bhushan, A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 40, 247–268 (2010)

    Article  Google Scholar 

  109. R. González, A. Hernández, Battez, D. Blanco, J. Viesca, A. Fernández-González, Lubrication of TiN, CrN and DLC PVD coatings with 1-Butyl-1-Methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. Tribol. Lett. 40(2), 269–277 (2010)

    Google Scholar 

  110. F. Zhou, Y. Liang, W. Liu, Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009)

    Article  Google Scholar 

  111. F. Federici Canova, H. Matsubara, M. Mizukami, K. Kurihara, A.L. Shluger, Shear dynamics of nanoconfined ionic liquids. Phys. Chem. Chem. Phys. 16, 8247–8256 (2014)

    Google Scholar 

  112. K. Ueno, M. Kasuya, M. Watanabe, M. Mizukami, K. Kurihara, Resonance shear measurement of nanoconfined ionic liquids. Phys. Chem. Chem. Phys. 12, 4066 (2010)

    Article  Google Scholar 

  113. N. Holmberg, J.C. Chen, A.S. Foster, K. Laasonen, Dissolution of NaCl nanocrystals: an ab initio molecular dynamics study. Phys. Chem. Chem. Phys. 16, 17437–17446 (2014)

    Article  Google Scholar 

  114. M. Ricci, P. Spijker, K. Voïtchovsky, Water-induced correlation between single ions imaged at the solid-liquid interface. Nat. Commun. 5, 4400 (2014)

    Article  ADS  Google Scholar 

  115. E.H.H. Chow, D.K. Bučar, V. Jones, New opportunities in crystal engineering-the role of atomic force microscopy in studies of molecular crystals. Chem. Comm. 48(74), 9210 (2012)

    Article  Google Scholar 

  116. K.i. Umeda, K. Kobayashi, N. Oyabu, Y. Hirata, K. Matsushige, H. Yamada, Practical aspects of Kelvin-probe force microscopy at solid/liquid interfaces in various liquid media. J. Appl. Phys. 116(13), 134307 (2014)

    Google Scholar 

  117. N.M. Markovic, Electrocatalysis: interfacing electrochemistry. Nat. Mat. 12(2), 101–102 (2013)

    Article  MathSciNet  Google Scholar 

  118. M. Schreiber, M. Eckardt, S. Klassen, H. Adam, M. Nalbach, L. Greifenstein, F. Kling, M. Kittelmann, R. Bechstein, A. Kühnle, How deprotonation changes molecular self-assembly-an AFM study in liquid environment. Soft Matter 9(29), 7145–7149 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reischl, B., Canova, F.F., Spijker, P., Watkins, M., Foster, A. (2015). Simulating Solid-Liquid Interfaces in Atomic Force Microscopy. In: Morita, S., Giessibl, F., Meyer, E., Wiesendanger, R. (eds) Noncontact Atomic Force Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15588-3_18

Download citation

Publish with us

Policies and ethics