Skip to main content
  • 902 Accesses

Abstract

Light and sound stimulation, which is used in Audiovisual Stimulation (AVS) devices, does affect brainwave activity. These devices are often preprogrammed to provide stimulation in the Theta or Alpha ranges to enhance quieting and relaxation. Stimulation in higher ranges or specifically in the high Alpha range is designed to improve cognitive functioning. AVS stimulation in the high Alpha range does result in localized increases in APF (Pfurtscheller et al. 1988), and stimulation close to one’s own APF results in greater enhancement than stimulation rates that are double one’s range (Frederick et al. 2005). It has also been shown that EEG changes associated with noncontingent (i.e., not contingent on EEG) AVS do not result in changes after the stimulation is terminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Frederick, J. A., DeAnna, L., Timmermann, D. L., Russell, H. L., & Lubar, J. F. (2005). EEG coherence effects of audio-visual stimulation (AVS) at dominant and twice dominant alpha frequency. Journal of Neurotherapy, 8(4), 25–42.

    Article  Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.

    Article  PubMed  Google Scholar 

  • Lubar, J. F. (1991). Discourse on the development of EEG diagnostics and biofeedback treatment for attention-deficit/hyperactivity disorders. Biofeedback and Self-Regulation, 16, 201–225.

    Article  PubMed  Google Scholar 

  • Lubar, J. F., & Bahler, W. W. (1976). Behavioral management of epileptic seizures following biofeedback training of the sensorimotor rhythm. Biofeedback and Self-Regulation, 1, 77–104.

    Article  PubMed  Google Scholar 

  • Nüesch, E., Häuser, W., Bernardy, K., Barth, J., & Jüni, P. (2013). Comparative efficacy of pharmacological and non-pharmacological interventions in fibromyalgia syndrome: Network meta-analysis. Annals of the Rheumatic Diseases, 72, 955–962.

    Article  PubMed  Google Scholar 

  • Pfurtscheller, G., Steffan, J., & Maresch, H. (1988). ERD mapping and functional topography: Temporal and spatial aspects. In G. Pfurtscheller & F. H. Lopez da Silva (Eds.), Functional brain imaging (pp. 117–130). Toronto: Hans Huber.

    Google Scholar 

  • Shummer, G. J., Noh, S. M., & Mendoza, J. J. (2013). The effect of neurofeedback and cranial electrotherapy on immune function within a group of HIV+ subjects: A controlled study. Journal of Neurotherapy, 17, 151–161.

    Article  Google Scholar 

  • Swingle, P. G. (1995, February). Somatosensory effects on brainwave architecture in neuronal_therapy. Paper presented at the Futurehealth Conference, Advances in Neurotherapy, Key West, FL.

    Google Scholar 

  • Swingle, P. G. (1998a). Neurofeedback treatment of pseudoseizure disorder. Biological Psychiatry, 44, 1196–1199.

    Article  PubMed  Google Scholar 

  • Swingle, P. G. (1998, February). Adjunctive treatment procedures. Paper presented at the Futurehealth Conference, Advances in Neurotherapy, Palm Springs, CA.

    Google Scholar 

  • Swingle, P. G. (2001). Parameters associated with the rapid neurotherapeutic treatment of Common ADD (CADD). Journal of Neurotherapy, 5(4), 73–84.

    Article  Google Scholar 

  • Tinius, T. (Ed.). (2004). New developments in blood flow hemoencephalography. Binghamton, NY: Haworth Medical Press.

    Google Scholar 

  • Toomim, H., Mize, W., Kwong, P. C., Toomim, M., Marsh, R., Kozlowski, G. P., et al. (2004). Intentional increase of cerebral blood oxygenation using hemoencephalography (HEG): An efficient brain exercise therapy. Journal of Neurotherapy, 8, 5–21.

    Article  Google Scholar 

  • Wahbeh, H., & Oken, B. S. (2013). Peak high-frequency HRV and peak alpha frequency higher in PTSD. Applied Psychophysiology and Biofeedback, 38, 57–69.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Journal of Neuroimaging, 54(2), 1427–1431.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Swingle, P.G. (2015). Braindriving. In: Adding Neurotherapy to Your Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-15527-2_6

Download citation

Publish with us

Policies and ethics