Skip to main content

Nanoarchitectonics Prepared by MAPLE for Biomedical Applications

  • Chapter
Green Processes for Nanotechnology

Abstract

Thin film depositions by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique have been intensively used in order to obtain nanoarchitectonics with different biomedical applications, like drug delivery systems, tissue engineering, implants with improved biocompatibility, improved adherent surfaces, antibacterial surfaces, etc. This chapter presents a description of the latest research regarding magnetite-based thin films and hybrid organic–inorganic thin films obtained by MAPLE. The most encountered preparation methods for magnetite-based thin films and several hybrid organic–inorganic systems are presented. Regarding the biomedical applications, our attention is directed to the antibacterial properties of differently modified surfaces for implants and medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu PK, Ringeisen BR, Callahan J, Brooks M, Bubb DM, Wu HD, Pique A, Spargo B, McGill RA, Chrisey DB (2001) The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398:607–614

    Google Scholar 

  2. Erakovic S, Jankovic A, Ristoscu C, Duta L, Serban N, Visan A, Mihailescu IN, Stan GE, Socol M, Iordache O, Dumitrescu I, Luculescu CR, Janackovic D, Miskovic-Stankovic V (2014) Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates. Appl Surf Sci 293:37–45

    Google Scholar 

  3. Duta L, Oktar FN, Stan GE, Popescu-Pelin G, Serban N, Luculescu C, Mihailescu IN (2013) Novel doped hydroxyapatite thin films obtained by pulsed laser deposition. Appl Surf Sci 265:41–49

    Google Scholar 

  4. Visan A, Grossin D, Stefan N, Duta L, Miroiu FM, Stan GE, Sopronyi M, Luculescu C, Freche M, Marsan O, Charvilat C, Ciuca S, Mihailescu IN (2014) Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications. Mater Sci Eng B-Adv 181:56–63

    Google Scholar 

  5. Iordache S, Cristescu R, Popescu AC, Popescu CE, Dorcioman G, Mihailescu IN, Ciucu AA, Balan A, Stamatin I, Fagadar-Cosma E, Chrisey DB (2013) Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation. Appl Surf Sci 278:207–210

    Google Scholar 

  6. Palla-Papavlu A, Rusen L, Dinca V, Filipescu M, Lippert T, Dinescu M (2014) Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation. Appl Surf Sci 302:87–91

    Google Scholar 

  7. Heredia E, Bojorge C, Casanova J, Cánepa H, Craievich A, Kellermann G (2014) Nanostructured ZnO thin films prepared by sol–gel spin-coating. Appl Surf Sci 317:19–25, http://dx.doi.org/10.1016/j.apsusc.2014.08.046

    Google Scholar 

  8. Carradò A, Viart N (2010) Nanocrystalline spin coated sol–gel hydroxyapatite thin films on Ti substrate: Towards potential applications for implants. Solid State Sci 12(7):1047–1050, http://dx.doi.org/10.1016/j.solidstatesciences.2010.04.014

    Google Scholar 

  9. Farag AAM, Yahia IS (2010) Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique. Opt Commun 283(21):4310–4317

    Google Scholar 

  10. Caricato AP, Luches A, Leggieri G, Martino M, Rella R (2012) Matrix-assisted pulsed laser deposition of polymer and nanoparticle films. Vacuum 86(6):661–666

    Google Scholar 

  11. Paun IA, Moldovan A, Luculescu CR, Dinescu M (2011) Biocompatible polymeric implants for controlled drug delivery produced by MAPLE. Appl Surf Sci 257(24):10780–10788

    Google Scholar 

  12. Sima F, Axente E, Iordache I, Luculescu C, Gallet O, Anselme K, Mihailescu N (2014) Combinatorial matrix assisted pulsed laser evaporation of a biodegradable polymer and fibronectin for protein immobilization and controlled release. Appl Surf Sci 306:75–79

    Google Scholar 

  13. Paun IA, Moldovan A, Luculescu CR, Staicu A, Dinescu M (2012) MAPLE deposition of PLGA:PEG films for controlled drug delivery: Influence of PEG molecular weight. Appl Surf Sci 258(23):9302–9308

    Google Scholar 

  14. Mihailescu M, Popescu RC, Matei A, Acasandrei A, Paun IA, Dinescu M (2014) Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy. Appl Optics 53(22):4850–4858

    Google Scholar 

  15. Miroiu FM, Socol G, Visan A, Stefan N, Craciun D, Craciun V, Dorcioman G, Mihailescu IN, Sima LE, Petrescu SM, Andronie A, Stamatin I, Moga S, Ducu C (2010) Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation. Mater Sci Eng B 169(1–3):151–158, http://dx.doi.org/10.1016/j.mseb.2009.10.004

    Google Scholar 

  16. Rusen L, Dinca V, Mitu B, Mustaciosu C, Dinescu M (2014) Temperature responsive functional polymeric thin films obtained by matrix assisted pulsed laser evaporation for cells attachment–detachment study. Appl Surf Sci 302:134–140, http://dx.doi.org/10.1016/j.apsusc.2013.09.122

    Google Scholar 

  17. Cristescu R, Popescu C, Dorcioman G, Miroiu FM, Socol G, Mihailescu IN, Gittard SD, Miller PR, Narayan RJ, Enculescu M, Chrisey DB (2013) Antimicrobial activity of biopolymer–antibiotic thin films fabricated by advanced pulsed laser methods. Appl Surf Sci 278:211–213, http://dx.doi.org/10.1016/j.apsusc.2013.01.062

    Google Scholar 

  18. Grumezescu V, Socol G, Grumezescu AM, Holban AM, Ficai A, Truşcǎ R, Bleotu C, Balaure PC, Cristescu R, Chifiriuc MC (2014) Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Appl Surf Sci 302:262–267, http://dx.doi.org/10.1016/j.apsusc.2013.09.081

    Google Scholar 

  19. Caricato AP, Luches A, Rella R (2009) Nanoparticle thin films for Gas sensors prepared by matrix assisted pulsed laser evaporation. Sensors (Basel) 9(4):2682–2696

    Google Scholar 

  20. Kopecky D, Vrnata M, Vyslouzil F, Myslik V, Fitl P, Ekrt O, Matejka P, Jelinek M, Kocourek T (2009) Polypyrrole thin films for gas sensors prepared by matrix-assisted pulsed laser evaporation technology: effect of deposition parameters on material properties. Thin Solid Films 517(6):2083–2087

    Google Scholar 

  21. Pique A (2011) The matrix-assisted pulsed laser evaporation (MAPLE) process: origins and future directions. Appl Phys A-Mater 105(3):517–528

    Google Scholar 

  22. Itina TE, Zhigilei LV, Garrison BJ (2001) Matrix-assisted pulsed laser evaporation of polymeric materials: a molecular dynamics study. Nucl Instrum Meth B 180:238–244

    Google Scholar 

  23. Bubb DM, Papantonakis M, Collins B, Brookes E, Wood J, Gurudas U (2007) The influence of solvent parameters upon the surface roughness of matrix assisted laser deposited thin polymer films. Chem Phys Lett 448(4–6):194–197

    Google Scholar 

  24. Jia K, Zhang J, Huang X, Liu X (2014) Size dependent electromagnetic properties of Fe3O4 nanospheres. Chem Phys Lett 614:31–35, http://dx.doi.org/10.1016/j.cplett.2014.09.002

    Google Scholar 

  25. Xiao L, Li J, Brougham DF, Fox EK, Feliu N, Bushmelev A, Schmidt A, Mertens N, Kiessling F, Valldor M, Fadeel B, Mathur S (2011) Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 5(8):6315–6324

    Google Scholar 

  26. Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K (2015) Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 135:536–539, http://dx.doi.org/10.1016/j.saa.2014.07.059

    Google Scholar 

  27. Ahmadi S, Chia CH, Zakaria S, Saeedfar K, Asim N (2012) Synthesis of Fe3O4 nanocrystals using hydrothermal approach. J Magn Magn Mater 324(24):4147–4150

    Google Scholar 

  28. Li YF, Jiang RL, Liu TY, Lv H, Zhou L, Zhang XY (2014) One-pot synthesis of grass-like Fe3O4 nanostructures by a novel microemulsion-assisted solvothermal method. Ceram Int 40(1):1059–1063

    Google Scholar 

  29. Gu L, He XM, Wu ZY (2014) Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery. Mater Res Bull 59:65–68

    Google Scholar 

  30. Yan SF, Zhang X, Sun YY, Wang TT, Chen XS, Yin JB (2014) In situ preparation of magnetic Fe3O4 nanoparticles inside nanoporous poly(L-glutamic acid)/chitosan microcapsules for drug delivery. Colloid Surf B 113:302–311

    Google Scholar 

  31. Huang X, Yi C, Fan Y, Zhang Y, Zhao L, Liang Z, Pan J (2014) Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater Sci Eng C 42:325–332, http://dx.doi.org/10.1016/j.msec.2014.05.041

    Google Scholar 

  32. Grumezescu AM, Holban AM, Andronescu E, Mogosanu GD, Vasile BS, Chifiriuc MC, Lazar V, Andrei E, Constantinescu A, Maniu H (2014) Anionic polymers and 10 nm Fe3O4@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties. Int J Pharm 463(2):146–154

    Google Scholar 

  33. Amarjargal A, Tijing LD, Im I-T, Kim CS (2013) Simultaneous preparation of Ag/Fe3O4 core–shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties. Chem Eng J 226:243–254, http://dx.doi.org/10.1016/j.cej.2013.04.054

    Google Scholar 

  34. Fang WJ, Zheng J, Chen C, Zhang HB, Lu YX, Ma L, Chen GJ (2014) One-pot synthesis of porous Fe3O4 shell/silver core nanocomposites used as recyclable magnetic antibacterial agents. J Magn Magn Mater 357:1–6

    Google Scholar 

  35. Jiang QL, Zheng SW, Hong RY, Deng SM, Guo L, Hu RL, Gao B, Huang M, Cheng LF, Liu GH, Wang YQ (2014) Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo. Appl Surf Sci 307:224–233

    Google Scholar 

  36. Barick KC, Singh S, Bahadur D, Lawande MA, Patkar DP, Hassan PA (2014) Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia. J Colloid Interface Sci 418:120–125

    Google Scholar 

  37. Gupta H, Paul P, Kumar N, Baxi S, Das DP (2014) One pot synthesis of water-dispersible dehydroascorbic acid coated Fe3O4 nanoparticles under atmospheric air: Blood cell compatibility and enhanced magnetic resonance imaging. J Colloid Interface Sci 430:221–228, http://dx.doi.org/10.1016/j.jcis.2014.05.043

    Google Scholar 

  38. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE T Magn 17(2):1247–1248

    Google Scholar 

  39. Faiyas APA, Vinod EM, Joseph J, Ganesan R, Pandey RK (2010) Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties. J Magn Magn Mater 322(4):400–404

    Google Scholar 

  40. Lin CC, Ho JM (2014) Structural analysis and catalytic activity of Fe3O4 nanoparticles prepared by a facile co-precipitation method in a rotating packed bed. Ceram Int 40(7):10275–10282

    Google Scholar 

  41. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103(2):317–324

    Google Scholar 

  42. Meng HN, Zhang ZZ, Zhao FX, Qiu T, Yang JD (2013) Orthogonal optimization design for preparation of Fe3O4 nanoparticles via chemical coprecipitation. Appl Surf Sci 280:679–685

    Google Scholar 

  43. Ma FX, Sun XY, He K, Jiang JT, Zhen L, Xu CY (2014) Hydrothermal synthesis, magnetic and electromagnetic properties of hexagonal Fe3O4 microplates. J Magn Magn Mater 361:161–165

    Google Scholar 

  44. Yang XW, Jiang W, Liu L, Chen BH, Wu SX, Sun DP, Li FS (2012) One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles. J Magn Magn Mater 324(14):2249–2257

    Google Scholar 

  45. Yuan KF, Ni YH, Zhang L (2012) Facile hydrothermal synthesis of polyhedral Fe3O4 nanocrystals, influencing factors and application in the electrochemical detection of H2O2. J Alloy Compd 532:10–15

    Google Scholar 

  46. Wu R, Liu J-H, Zhao L, Zhang X, Xie J, Yu B, Ma X, Yang S-T, Wang H, Liu Y (2014) Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption. J Environ Chem Eng 2(2):907–913, http://dx.doi.org/10.1016/j.jece.2014.02.005

    Google Scholar 

  47. Gao G, Qiu PY, Qian QR, Zhou N, Wang K, Song H, Fu HL, Cui DX (2013) PEG-200-assisted hydrothermal method for the controlled-synthesis of highly dispersed hollow Fe3O4 nanoparticles. J Alloy Compd 574:340–344

    Google Scholar 

  48. Chen FX, Liu R, Xiao SW, Zhang CT (2014) Solvothermal synthesis in ethylene glycol and adsorption property of magnetic Fe3O4 microspheres. Mater Res Bull 55:38–42

    Google Scholar 

  49. Liu J, Wang L, Wang J, Zhang LT (2013) Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe3O4 nanoparticles. Mater Res Bull 48(2):416–421

    Google Scholar 

  50. Patil RM, Shete PB, Thorat ND, Otari SV, Barick KC, Prasad A, Ningthoujam RS, Tiwale BM, Pawar SH (2014) Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and biocompatibility. J Magn Magn Mater 355:22–30

    Google Scholar 

  51. Wei Y, Yin GF, Ma CY, Huang ZB, Chen XC, Liao XM, Yao YD, Yin H (2013) Synthesis and cellular compatibility of biomineralized Fe3O4 nanoparticles in tumor cells targeting peptides. Colloid Surf B 107:180–188

    Google Scholar 

  52. Nigam S, Barick KC, Bahadur D (2011) Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J Magn Magn Mater 323(2):237–243

    Google Scholar 

  53. Safari J, Masouleh SF, Zarnegar Z, Najafabadi AE (2014) Water-dispersible Fe3O4 nanoparticles stabilized with a biodegradable amphiphilic copolymer. C R Chim 17(2):151–155

    Google Scholar 

  54. Sohn C-H, Park SP, Choi SH, Park S-H, Kim S, Xu L, Kim S-H, Hur JA, Choi J, Choi TH (2015) MRI molecular imaging using GLUT1 antibody-Fe3O4 nanoparticles in the hemangioma animal model for differentiating infantile hemangioma from vascular malformation. Nanomedicine 11(1):127–135, http://dx.doi.org/10.1016/j.nano.2014.08.003

    Google Scholar 

  55. Tran LD, Hoang NMT, Mai TT, Tran HV, Nguyen NT, Tran TD, Do MH, Nguyen QT, Pham DG, Ha TP, Le HV, Nguyen PX (2010) Nanosized magnetofluorescent Fe3O4–curcumin conjugate for multimodal monitoring and drug targeting. Colloids Surf A Physicochem Eng Asp 371(1–3):104–112, http://dx.doi.org/10.1016/j.colsurfa.2010.09.011

    Google Scholar 

  56. Chen CY, Jiang XC, Kaneti YV, Yu AB (2013) Design and construction of polymerized-glucose coated Fe3O4 magnetic nanoparticles for delivery of aspirin. Powder Technol 236:157–163

    Google Scholar 

  57. Chen WH, Cao YH, Liu M, Zhao QH, Huang J, Zhang HL, Deng ZW, Dai JW, Williams DF, Zhang ZJ (2012) Rotavirus capsid surface protein VP4-coated Fe3O4 nanoparticles as a theranostic platform for cellular imaging and drug delivery. Biomaterials 33(31):7895–7902

    Google Scholar 

  58. Lu WS, Shen YH, Xie AJ, Zhang WQ (2013) Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites. J Magn Magn Mater 345:142–146

    Google Scholar 

  59. Hajdu A, Illes E, Tombacz E, Borbath I (2009) Surface charging, polyanionic coating and colloid stability of magnetite nanoparticles. Colloid Surf A 347(1–3):104–108

    Google Scholar 

  60. Tombacz E, Toth IY, Nesztor D, Illes E, Hajdu A, Szekeres M, Vekas L (2013) Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance. Colloid Surf A 435:91–96

    Google Scholar 

  61. Salazar-Camacho C, Villalobos M, Rivas-Sanchez MD, Arenas-Alatorre J, Alcaraz-Cienfuegos J, Gutierrez-Ruiz ME (2013) Characterization and surface reactivity of natural and synthetic magnetites. Chem Geol 347:233–245

    Google Scholar 

  62. Atila Dinçer C, Yıldız N, Aydoğan N, Çalımlı A (2014) A comparative study of Fe3O4 nanoparticles modified with different silane compounds. Appl Surf Sci 318:297–304, http://dx.doi.org/10.1016/j.apsusc.2014.06.069

    Google Scholar 

  63. Yang JH, Zou P, Yang LL, Cao J, Sun YF, Han DL, Yang S, Wang Z, Chen G, Wang BJ, Kong XW (2014) A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles. Appl Surf Sci 303:425–432

    Google Scholar 

  64. Shariatinia Z, Nikfar Z (2013) Synthesis and antibacterial activities of novel nanocomposite films of chitosan/phosphoramide/Fe3O4 NPs. Int J Biol Macromol 60:226–234

    Google Scholar 

  65. Ghanbari D, Salavati-Niasari M, Ghasemi-Kooch M (2014) A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J Ind Eng Chem 20(6):3970–3974, http://dx.doi.org/10.1016/j.jiec.2013.12.098

    Google Scholar 

  66. Long J, Jiao A, Wei B, Wu Z, Zhang Y, Xu X, Jin Z (2014) A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. J Mol Catal B Enzym 109:53–61, http://dx.doi.org/10.1016/j.molcatb.2014.08.007

    Google Scholar 

  67. Liu Q, Li H, Zhao Q, Zhu R, Yang Y, Jia Q, Bian B, Zhuo L (2014) Glucose-sensitive colorimetric sensor based on peroxidase mimics activity of porphyrin-Fe3O4 nanocomposites. Mater Sci Eng C 41:142–151, http://dx.doi.org/10.1016/j.msec.2014.04.038

    Google Scholar 

  68. Yang Z, Zhang C, Zhang J, Bai W (2014) Potentiometric glucose biosensor based on core–shell Fe3O4–enzyme–polypyrrole nanoparticles. Biosens Bioelectron 51:268–273, http://dx.doi.org/10.1016/j.bios.2013.07.054

    Google Scholar 

  69. Zhang G, Lai BB, Zhou YY, Chen BA, Wang XM, Lu Q, Chen YH (2011) Fe3O4 nanoparticles with daunorubicin induce apoptosis through caspase 8-PARP pathway and inhibit K562 leukemia cell-induced tumor growth in vivo. Nanomedicine 7(5):595–603

    Google Scholar 

  70. Khorramizadeh MR, Esmail-Nazari Z, Zarei-Ghaane Z, Shakibaie M, Mollazadeh-Moghaddam K, Iranshahi M, Shahverdi AR (2010) Umbelliprenin-coated Fe3O4 magnetite nanoparticles: antiproliferation evaluation on human fibrosarcoma cell line (HT-1080). Mat Sci Eng C-Mater 30(7):1038–1042

    Google Scholar 

  71. Tie SL, Lee HC, Bae YS, Kim MB, Lee K, Lee CH (2007) Monodisperse Fe3O4/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property. Colloid Surf A 293(1–3):278–285

    Google Scholar 

  72. Larumbe S, Gomez-Polo C, Perez-Landazabal JI, Pastor JM (2012) Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. J Phys-Condens Matter 24(26)

    Google Scholar 

  73. Abbas M, Rao BP, Islam MN, Naga SM, Takahashi M, Kim C (2014) Highly stable- silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless- polyol process. Ceram Int 40(1):1379–1385

    Google Scholar 

  74. Mesarosova M, Kozics K, Babelova A, Regendova E, Pastorek M, Vnukova D, Buliakova B, Razga F, Gabelova A (2014) The role of reactive oxygen species in the genotoxicity of surface-modified magnetite nanoparticles. Toxicol Lett 226(3):303–313

    Google Scholar 

  75. Xia HQ, Cui B, Zhou JH, Zhang LL, Zhang J, Guo XH, Guo HL (2011) Synthesis and characterization of Fe3O4@C@Ag nanocomposites and their antibacterial performance. Appl Surf Sci 257(22):9397–9402

    Google Scholar 

  76. Arsianti M, Lim M, Lou SN, Goon IY, Marquis CP, Amal R (2011) Bi-functional gold-coated magnetite composites with improved biocompatibility. J Colloid Interface Sci 354(2):536–545

    Google Scholar 

  77. Muzquiz-Ramos EM, Cortes-Hernandez DA, Escobedo-Bocardo JC, Zugasti-Cruz A (2012) In vitro bonelike apatite formation on magnetite nanoparticles after a calcium silicate treatment: Preparation, characterization and hemolysis studies. Ceram Int 38(8):6849–6856

    Google Scholar 

  78. Yun J-G, Lee Y-M, Lee W-J, Kim C-S, Yoon S-G (2013) Selective growth of pure magnetite thin films and/or nanowires grown in situ at a low temperature by pulsed laser deposition. J Mater Chem C 1(10):1977–1982. doi:10.1039/C2TC00672C

    Google Scholar 

  79. Grumezescu V, Holban AM, Iordache F, Socol G, Mogoşanu GD, Grumezescu AM, Ficai A, Vasile BŞ, Truşcă R, Chifiriuc MC, Maniu H (2014) MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Appl Surf Sci 306:16–22, http://dx.doi.org/10.1016/j.apsusc.2014.01.126

    Google Scholar 

  80. Oh CY, Oh JH, Ko T (2002) The microstructure and characteristics of magnetite thin films prepared by ultrasound-enhanced ferrite plating. IEEE T Magn 38(5):3018–3020

    Google Scholar 

  81. Mantovan R, Lamperti A, Georgieva M, Tallarida G, Fanciulli M (2010) CVD synthesis of polycrystalline magnetite thin films: structural, magnetic and magnetotransport properties. J Phys D Appl Phys 43(6)

    Google Scholar 

  82. Zhang GM, Fan CF, Pan LQ, Wang FP, Wu P, Qiu H, Gu YS, Zhang Y (2005) Magnetic and transport properties of magnetite thin films. J Magn Magn Mater 293(2):737–745

    Google Scholar 

  83. Qiu HM, Pan LQ, Li LW, Zhu H, Zhao XD, Xu M, Qin LQ, Xiao JQ (2007) Microstructure and magnetic properties of magnetite thin films prepared by reactive sputtering. J Appl Phys 102(11)

    Google Scholar 

  84. Cristescu R, Popescu C, Socol G, Iordache I, Mihailescu IN, Mihaiescu DE, Grumezescu AM, Balan A, Stamatin I, Chifiriuc C, Bleotu C, Saviuc C, Popa M, Chrisey DB (2012) Magnetic core/shell nanoparticle thin films deposited by MAPLE: investigation by chemical, morphological and in vitro biological assays. Appl Surf Sci 258(23):9250–9255

    Google Scholar 

  85. Andrew P (2010) Rising threat of infections unfazed by antibiotics. New York Times

    Google Scholar 

  86. Breathnach AS (2013) Nosocomial infections and infection control. Medicine 41(11):649–653, http://dx.doi.org/10.1016/j.mpmed.2013.08.010

    Google Scholar 

  87. Grumezescu V, Holban AM, Grumezescu AM, Socol G, Ficai A, Vasile BS, Trusca R, Bleotu C, Lazar V, Chifiriuc CM, Mogosanu GD (2014) Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization. Biofabrication 6(3)

    Google Scholar 

  88. Mihaiescu DE, Cristescu R, Dorcioman G, Popescu CE, Nita C, Socol G, Mihailescu IN, Grumezescu AM, Tamas D, Enculescu M, Negrea RF, Ghica C, Chifiriuc C, Bleotu C, Chrisey DB (2013) Functionalized magnetite silica thin films fabricated by MAPLE with antibiofilm properties. Biofabrication 5(1)

    Google Scholar 

  89. Anghel AG, Grumezescu AM, Chirea M, Grumezescu V, Socol G, Iordache F, Oprea AE, Anghel I, Holban AM (2014) MAPLE fabricated Fe3O4@cinnamomum verum antimicrobial surfaces for improved gastrostomy tubes. Molecules 19(7):8981–8994

    Google Scholar 

  90. Holban AM, Grumezescu V, Grumezescu AM, Vasile BS, Trusca R, Cristescu R, Socol G, Iordache F (2014) Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein J Nanotechnol 5:872–880

    Google Scholar 

  91. Vivero-Escoto JL, Huang YT (2011) Inorganic-organic hybrid nanomaterials for therapeutic and diagnostic imaging applications. Int J Mol Sci 12(6):3888–3927

    Google Scholar 

  92. Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine 7(1):22–39

    Google Scholar 

  93. Guo R, Du X, Zhang R, Deng L, Dong A, Zhang J (2011) Bioadhesive film formed from a novel organic–inorganic hybrid gel for transdermal drug delivery system. Eur J Pharm Biopharm 79(3):574–583, http://dx.doi.org/10.1016/j.ejpb.2011.06.006

    Google Scholar 

  94. Nguyen TD (2013) Portraits of colloidal hybrid nanostructures: controlled synthesis and potential applications. Colloid Surf B 103:326–344

    Google Scholar 

  95. Rosu MC, Bratu I (2014) Promising psyllium-based composite containing TiO2 nanoparticles as aspirin-carrier matrix. Prog Nat Sci-Mater 24(3):205–209

    Google Scholar 

  96. Yu S, Jeong SG, Chung O, Kim S (2014) Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Sol Energ Mat Sol C 120:549–554

    Google Scholar 

  97. Yoshioka T, Chávez-Valdez A, Roether JA, Schubert DW, Boccaccini AR (2013) AC electrophoretic deposition of organic–inorganic composite coatings. J Colloid Interface Sci 392:167–171, http://dx.doi.org/10.1016/j.jcis.2012.09.087

    Google Scholar 

  98. Bounor-Legaré V, Cassagnau P (2014) In situ synthesis of organic–inorganic hybrids or nanocomposites from sol–gel chemistry in molten polymers. Prog Polym Sci 39(8):1473–1497, http://dx.doi.org/10.1016/j.progpolymsci.2014.04.003

    Google Scholar 

  99. Wang H, Chen D, Yu L, Chang M, Ci L (2015) One-step, room temperature, colorimetric melamine sensing using an in-situ formation of silver nanoparticles through modified Tollens process. Spectrochim Acta A Mol Biomol Spectrosc 137:281–285, http://dx.doi.org/10.1016/j.saa.2014.08.041

    Google Scholar 

  100. Li X, Pang RZ, Li JS, Sun XY, Shen JY, Han WQ, Wang LJ (2013) In situ formation of Ag nanoparticles in PVDF ultrafiltration membrane to mitigate organic and bacterial fouling. Desalination 324:48–56

    Google Scholar 

  101. Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2010) Poly L-lactide-layered double hydroxide nanocomposites via in situ polymerization of L-lactide. Polym Degrad Stabil 95(12):2563–2573

    Google Scholar 

  102. Fu PJ, Chen GM, Liu J, Yang JP (2009) An intercalated hybrid of polyacrylamide/layered double hydroxide prepared via in situ intercalative polymerization. Mater Lett 63(20):1725–1728

    Google Scholar 

  103. Nogueira T, Botan R, Wypych F, Lona L (2011) Study of thermal and mechanical properties of PMMA/LDHs nanocomposites obtained by in situ bulk polymerization. Compos Part A-Appl S 42(8):1025–1030

    Google Scholar 

  104. Tran MK, Hassani LN, Calvignac B, Beuvier T, Hindre F, Boury F (2013) Lysozyme encapsulation within PLGA and CaCO3 microparticles using supercritical CO2 medium. J Supercrit Fluid 79:159–169

    Google Scholar 

  105. Ma F, Zhou L, Tang J, Wei SH, Zhou YH, Zhou JH, Wang FB, Shen J (2012) A facile method for hemoglobin encapsulation in silica nanoparticles and application in biosensors. Micropor Mesopor Mat 160:106–113

    Google Scholar 

  106. Fujiwara M, Shiokawa K, Kubota T, Morigaki K (2014) Preparation of calcium carbonate microparticles containing organic fluorescent molecules from vaterite. Adv Powder Technol 25(3):1147–1154

    Google Scholar 

  107. Catauro M, Papale F, Bollino F, Gallicchio M, Pacifico S (2014) Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique. Mater Sci Eng C 40:253–259, http://dx.doi.org/10.1016/j.msec.2014.04.001

    Google Scholar 

  108. Zu L, Li R, Jin L, Lian H, Liu Y, Cui X (2014) Preparation and characterization of polypropylene/silica composite particle with interpenetrating network via hot emulsion sol–gel approach. Prog Nat Sci 24(1):42–49, http://dx.doi.org/10.1016/j.pnsc.2014.01.001

    Google Scholar 

  109. Wang HA, Bongio M, Farbod K, Nijhuis AWG, van den Beucken J, Boerman OC, van Hest JCM, Li YB, Jansen JA, Leeuwenburgh SCG (2014) Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta Biomater 10(1):508–519

    Google Scholar 

  110. Wang XX, Song XM, Lin M, Wang HT, Zhao YL, Zhong W, Du QG (2007) Surface initiated graft polymerization from carbon-doped TiO2 nanoparticles under sunlight illumination. Polymer 48(20):5834–5838

    Google Scholar 

  111. Bach LG, Islam MR, Kim JT, Seo S, Lim KT (2012) Encapsulation of Fe3O4 magnetic nanoparticles with poly(methyl methacrylate) via surface functionalized thiol-lactam initiated radical polymerization. Appl Surf Sci 258(7):2959–2966

    Google Scholar 

  112. Liu P, Wang TM (2008) Poly(hydroethyl acrylate) grafted from ZnO nanoparticles via surface-initiated atom transfer radical polymerization. Curr Appl Phys 8(1):66–70

    Google Scholar 

  113. Zhao J, Milanova M, Warmoeskerken MMCG, Dutschk V (2012) Surface modification of TiO2 nanoparticles with silane coupling agents. Colloid Surf A 413:273–279

    Google Scholar 

  114. Mallakpour S, Barati A (2011) Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles. Prog Org Coat 71(4):391–398

    Google Scholar 

  115. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65(2):222–228

    Google Scholar 

  116. Meng SW, Mansouri J, Ye Y, Chen V (2014) Effect of templating agents on the properties and membrane distillation performance of TiO2-coated PVDF membranes. J Membrane Sci 450:48–59

    Google Scholar 

  117. Crippa M, Callone E, D’Arienzo M, Müller K, Polizzi S, Wahba L, Morazzoni F, Scotti R (2011) TiO2 nanocrystals grafted on macroporous silica: a novel hybrid organic–inorganic sol–gel approach for the synthesis of highly photoactive composite material. Appl Catal B Environ 104(3–4):282–290, http://dx.doi.org/10.1016/j.apcatb.2011.03.018

    Google Scholar 

  118. Stathatos E, Papoulis D, Aggelopoulos CA, Panagiotaras D, Nikolopoulou A (2012) TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: Synergistic effect to the photocatalytic degradation of an azo-dye in water. J Hazard Mater 211:68–76

    Google Scholar 

  119. Birjega R, Matei A, Mitu B, Ionita MD, Filipescu M, Stokker-Cheregi F, Luculescu C, Dinescu M, Zavoianu R, Pavel OD, Corobea MC (2013) Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation. Thin Solid Films 543:63–68

    Google Scholar 

  120. Predoi D, Ciobanu CS, Radu M, Costache M, Dinischiotu A, Popescu C, Axente E, Mihailescu IN, Gyorgy E (2012) Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications. Mat Sci Eng C-Mater 32(2):296–302

    Google Scholar 

  121. Paun IA, Moldovan A, Luculescu CR, Dinescu M (2013) Antibacterial polymeric coatings grown by matrix assisted pulsed laser evaporation. Appl Phys A-Mater 110(4):895–902

    Google Scholar 

  122. Bigi A, Boanini E, Capuccini C, Fini M, Mihailescu IN, Ristoscu C, Sima F, Torricelli P (2009) Biofunctional alendronate–hydroxyapatite thin films deposited by matrix assisted pulsed laser evaporation. Biomaterials 30(31):6168–6177, http://dx.doi.org/10.1016/j.biomaterials.2009.07.066

    Google Scholar 

  123. Sima LE, Filimon A, Piticescu RM, Chitanu GC, Suflet DM, Miroiu M, Socol G, Mihailescu IN, Neamtu J, Negroiu G (2009) Specific biofunctional performances of the hydroxyapatite–sodium maleate copolymer hybrid coating nanostructures evaluated by in vitro studies. J Mater Sci Mater Med 20(11):2305–2316. doi:10.1007/s10856-009-3800-7

    Google Scholar 

  124. Ciobanu C, Iconaru S, Gyorgy E, Radu M, Costache M, Dinischiotu A, Le Coustumer P, Lafdi K, Predoi D (2012) Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique. Chem Cent J 6(1):17

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Sectoral Operational Programme Human Resources Development, financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/156/1.2/G/135764 “Improvement and implementation of university master programs in the field of Applied Chemistry and Materials Science– ChimMaster”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Mihai Grumezescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Popescu, R.C., Grumezescu, A.M. (2015). Nanoarchitectonics Prepared by MAPLE for Biomedical Applications. In: Basiuk, V., Basiuk, E. (eds) Green Processes for Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-15461-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15461-9_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15460-2

  • Online ISBN: 978-3-319-15461-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics