Skip to main content

Lithium Titanate-Based Anode Materials

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Li4Ti5O12 is a potential Li-ion battery anode material of for use in large-scale energy storage, considering its high safety, excellent cycling stability, environmental friendliness and low cost. It also presents attractive performance as anode material for Na-ion batteries. Nanostructuring and carbon coating endow Li4Ti5O12 electrodes with excellent rate capability by overcoming its intrinsic sluggish Li-ion diffusivity and low electronic conductivity. The gassing issue of Li4Ti5O12-based batteries is the main obstacle that hinders its practical application. Surface coatings on Li4Ti5O12 electrode or Li4Ti5O12 particles as well as employing effective additives for electrolyte are potential approaches to form stable film on Li4Ti5O12 electrode to circumvent the gas generation problem. The cathode materials, electrolyte systems as well as capacity matching of the two electrodes impose important influences on the cycling performance of Li4Ti5O12-based batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter M, Wrodnigg GH, Besenhard JO et al (2000) Dilatometric investigations of graphite electrodes in nonaqueous lithium battery electrolytes. J Electrochem Soc 147(7):2427–2431

    Google Scholar 

  2. Yoshio M, Wang H, Fukuda K et al (2000) Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J Electrochem Soc 147(4):1245–1250

    Google Scholar 

  3. Yoshio M, Wang H, Fukuda K (2003) Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew Chem 115:4335–4338

    Google Scholar 

  4. Zhang SS, Xu X, Jow TR (2006) Study of the charging process of a LiCoO2-based Li-ion battery. J Power Sources 160(2):1349–1354

    Google Scholar 

  5. Zheng SS (2006) The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sources 161(2):1385–1391

    Google Scholar 

  6. Wolfenstine J, Lee U, Allen JL (2006) Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere. J Power Sources 154(1):287–289

    Google Scholar 

  7. Wunde F, Berkemeier F, Schmitz G (2012) Lithium diffusion in sputter-deposited Li4Ti5O12 thin films. J Power Sources 215:109–115

    Google Scholar 

  8. He Y-B, Li B, Liu M, Zhang C et al (2012) Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep 2:913

    Google Scholar 

  9. Scharner S, Weppner W, Schmid-Beurmann P (1999) Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. J Electrochem Soc 146(3):857–861

    Google Scholar 

  10. Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142(5):1431–1435

    Google Scholar 

  11. Sorensen EM, Barry SJ, Jung H-K et al (2006) Three-dimensional ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem Mater 18(2):482–489

    Google Scholar 

  12. Sun L, Wang J, Jiang K et al (2014) Mesoporous Li4Ti5O12 nanoclusters as high performance negative electrodes for lithium ion batteries. J Power Sources 248:265–272

    Google Scholar 

  13. Ferg E, Gummow RJ, de Kock A et al (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141(11):L147–L150

    Google Scholar 

  14. Chen Z, Belharouak I, Sun Y-K et al (2013) Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater 23:959–969

    Google Scholar 

  15. Kostlanova T, Dědeček J, Krtil P (2007) The effect of the inner particle structure on the electronic structure of the nano-crystalline Li–Ti–O spinels. Electrochim Acta 52(5):1847–1856

    Google Scholar 

  16. Kellerman DG, Mukhina NA, Zhuravlew NA et al (2010) Optical absorption and nuclear magnetic resonance in lithium titanium spinel doped by chromium. Phys Solid State 52(3):459–464

    Google Scholar 

  17. Jhan Y-R, Duh J-G (2012) Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density. Electrochim Acta 63:9–15

    Google Scholar 

  18. Kim C, Norberg NS, Alexander CT et al (2012) Mechanism of phase propagation during lithiation in carbon-free Li4Ti5O12 battery electrodes. Adv Funct Mater 23(9):1214–1222

    Google Scholar 

  19. Tsai P-C, Hsu W-D, Lin S-K (2014) Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries. J Electrochem Soc 161(3):A439–A444

    Google Scholar 

  20. Lippens P-E, Womes M, Kubiak P et al (2004) Electronic structure of the spinel Li4Ti5O12 studied by ab initio calculations and X-ray absorption spectroscopy. Solid State Sci 6(2):161–166

    Google Scholar 

  21. Ouyang CY, Zhong ZY, Lei MS (2007) Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem Commun 9(5):1107–1112

    Google Scholar 

  22. Song H, Yun SW, Chun HH et al (2012) Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy Environ Sci 5:9903–9913

    Google Scholar 

  23. Ding Z, Zhao L, Suo L et al (2011) Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study. Phys Chem Chem Phys 13:15127–15133

    Google Scholar 

  24. Chan MKY, Ceder G (2010) Efficient band gap prediction for solids. Phys Rev Let 105:196403

    Google Scholar 

  25. Chen CH, Vaughey JT, Jansen AN et al (2001) Studies of Mg-substituted Li4−xMg x Ti5O12 spinel electrodes (0 ≤ x≤1) for lithium batteries. J Electrochem Soc 148(1):A102–A104

    Google Scholar 

  26. Zhong Z, Ouyang C, Shi S et al (2008) Ab initio Studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries. ChemPhysChem 9(14):2104–2108

    Google Scholar 

  27. Wang Y, Liu H, Wang K et al (2009) Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. J Mater Chem 19:6789–6795

    Google Scholar 

  28. Fang W, Zuo P, Ma Y et al (2013) Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery. Electrochim Acta 94:294–299

    Google Scholar 

  29. Yi F-T, Xie Y, Wu Q et al (2012) High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries. J Power Sources 214:220–226

    Google Scholar 

  30. Sun Y-K, Jung D-J, Lee YS et al (2004) Synthesis and electrochemical characterization of spinel Li[Li(1−x)/3CrxTi(5−2x)/3]O4 anode materials. J Power Sources 125:242–245

    Google Scholar 

  31. Zhu G-N, Wang C-X, Xia Y-Y (2011) A comprehensive study of effects of carbon coating on Li4Ti5O12 anode material for lithium-ion batteries. J Electrochem Soc 158(2):A102–A109

    Google Scholar 

  32. Wagemaker M, Simon DR, Kelder EM et al (2006) A kinetic two-phase and equilibrium solid solution in spinel Li4+x Ti5O12. Adv Mater 18(23):3169–3173

    Google Scholar 

  33. Wang F, Wu L, Ma C et al (2013) Excess lithium storage and charge compensation in nanoscale Li4+x Ti5O12. Nanotechnology 24:424006. doi:10.1088/0957-4484/24/42/424006

    Google Scholar 

  34. Ganapathy S, Wagemaker M (2012) Nanozize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano 6(10):8702–8712

    Google Scholar 

  35. Kataokaa K, Takahashia Y, Kijima N et al (2009) A single-crystal study of the electrochemically Li-ion intercalated spinel-type Li4Ti5O12. Solid State Ionics 180(6–8):631–635

    Google Scholar 

  36. Wagemaker M, Eck ERH, Kentgens APM et al (2009) Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J Phys Chem B 113(1):224–230

    Google Scholar 

  37. Lu X, Zhao L, He X et al (2012) Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv Mater 24(24):3233–3238

    Google Scholar 

  38. Borghols WJH, Wagemaker M, Lafont U et al (2009) Size effects in the Li4+x Ti5O12 spinel. J Am Chem Soc 131(49):17786–17792

    Google Scholar 

  39. Ven AV, Jishnu Bhattacharya J, Belak AA (2013) Understanding Li diffusion in Li-intercalation compounds. Acc Chem Res 46(5):1216–1225

    Google Scholar 

  40. Laumann A, Boysen H, Bremholm M (2011) Lithium migration at high temperatures in Li4Ti5O12 studied by neutron diffraction. Chem Mater 23(11):2753–2759

    Google Scholar 

  41. Zhao H, Li Y, Zhu Z (2008) Structural and electrochemical characteristics of Li4−x Al x Ti5O12 as anode material for lithium-ion batteries. Electrochim Acta 53:7079–7083

    Google Scholar 

  42. Wang W, Jiang B, Xiong W et al (2013) A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries. Electrochim Acta 114:198–204

    Google Scholar 

  43. Ji M, Xu Y, Zhao Z (2014) Preparation and electrochemical performance of La3+ and F co-doped Li4Ti5O12 anode material for lithium-ion batteries. J Power Sources 263:296–303

    Google Scholar 

  44. Zhang Q, Zhang C, Li B et al (2013) Preparation and electrochemical properties of Ca-doped Li4Ti5O12 as anode materials in lithium-ion battery. Electrochim Acta 98:146–152

    Google Scholar 

  45. Zhang B, Du H, Li B et al (2010) Structure and electrochemical properties of Zn-doped Li4Ti5O12 as anode materials in Li-ion battery. Electrochem Solid-State Let 13(4):A36–A38

    MathSciNet  Google Scholar 

  46. Zhang B, Huang Z-D, Oh SW et al (2011) Improved rate capability of carbon coated Li3.9Sn0.1Ti5O12 porous electrodes for Li-ion batteries. J Power Sources 196:10692–10697

    Google Scholar 

  47. Tian B, Xiang H, Zhang L et al (2010) Niobium doped lithium titanate as a high rate anode material for Li-ion batteries. Electrochim Acta 55:5453–5458

    Google Scholar 

  48. Zhang Q, Zhang C, Li B et al (2013) Preparation and characterization of W-doped Li4Ti5O12 anode material for enhancing the high rate performance. Electrochim Acta 107:139–146

    Google Scholar 

  49. Yi T-F, Shu J, Zhu Y-R et al (2010) Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0 V. J Power Sources 195(1):285–288

    Google Scholar 

  50. Yi T-F, Xie Y, Jiang L-J et al (2012) Advanced electrochemical properties of Mo-doped Li4Ti5O12 anode material for power lithium ion battery. RSC Adv 2:3541–3547

    Google Scholar 

  51. Wolfenstine J, Allen JL (2008) Electrical conductivity and charge compensation in Ta doped Li4Ti5O12. J Power Sources 180(1):582–585

    Google Scholar 

  52. Ma Y, Ding B, Ji G et al (2013) Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 7(12):10870–10878

    Google Scholar 

  53. Du G, Sharma N, Peterson VK et al (2011) Br-doped Li4Ti5O12 and composite TiO2 anodes for Li-ion batteries: synchrotron X-ray and in situ neutron diffraction studies. Adv Funct Mater 21(20):3990–3997

    Google Scholar 

  54. Wu H, Chang S, Liu X et al (2013) Sr-doped Li4Ti5O12 as the anode material for lithium-ion batteries. Solid State Ionics 232:13–18

    Google Scholar 

  55. Yi T-F, Chen B, Shen H-Y et al (2013) Spine Li4Ti5−xZrxO12 (0 ≤ x ≤ 0.25) materials as high-performance anode materials for lithium-ions batteries. J Alloy Compd 558:11–17

    Google Scholar 

  56. Xiao CW, Ding Y, Zhang JT et al (2014) Li4−xNaxTi5O12 with low operation potential as anode for lithium ion batteries. J Power Sources 248:323–329

    Google Scholar 

  57. Yi T-F, Yang S-Y, Li X-Y et al (2014) Sub-micrometric Li4-xNaxTi5O12 (0 ≤ x ≤ 0.20) spinel as anode material exhibiting high rate capability. J Power Sources 246:505–511

    Google Scholar 

  58. Yoshikawa D, Kadoma Y, Kim J-M et al (2010) Spray-drying synthesized lithium-excess Li4+xTi5−xO12−δ and its electrochemical property as negative electrode material for Li-ion batteries. Electrochim Acta 55(6):1872–1879

    Google Scholar 

  59. Ge H, Li N, Li D et al (2008) Study on the effect of Li doping in spinel Li4+xTi5−xO12 (0 ≤ x ≤ 0.20) materials for lithium-ion batteries. Electrochem Commun 10(7):1031–1034

    MathSciNet  Google Scholar 

  60. Capsoni D, Bini M, Massarotti V et al (2008) Cations distribution and valence states in Mn-substituted Li4Ti5O12 structure. Chem Mater 20(13):4291–4298

    Google Scholar 

  61. Song H, Yun S-W, Chun H-H et al (2012) Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy Environ Sci 5:9903–9913

    Google Scholar 

  62. Capsoni D, Bini M, Massarotti V et al (2009) Cr and Ni doping of Li4Ti5O12: cation distribution and functional properties. J Phys Chem C 113(45):19664–19671

    Google Scholar 

  63. Kaftelen H, Tuncer M, Tu S et al (2013) Mn-substituted spinel Li4Ti5O12 materials studied by multifrequency EPR spectroscopy. J Mater Chem A 1:9973–9982

    Google Scholar 

  64. Lin J-Y, Hsu C-C, Ho H-P et al (2013) Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries. Electrochim Acta 87:126–132

    Google Scholar 

  65. Zhang Y, Zhang C, Lin Y et al (2014) Influence of Sc3+ doping in B-site on electrochemical performance of Li4Ti5O12 anode materials for lithium-ion battery. J Power Sources 250:50–57

    Google Scholar 

  66. Park JS, Baek S-H, Jeong Y-I et al (2013) Effects of a dopant on the electrochemical properties of Li4Ti5O12 as a lithium-ion battery anode material. J Power Sources 244:527–531

    Google Scholar 

  67. Huang S, Wen Z, Zhu X et al (2007) Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries. J Power Sources 165:408–412

    Google Scholar 

  68. Qiu C, Yuan Z, Liu L et al (2013) Sol-gel synthesis and electrochemical performance of Li4−xMgxTi5−xZrxO12 anode material for lithium-ion batteries. Chin J Chem 31:819–825

    Google Scholar 

  69. Gao J, Jiang C, Wan C (2010) Synthesis and characterization of spherical La-doped nanocrystalline Li4Ti5O12/C compound for lithium-ion batteries. J Electrochem Soc 157(2):K39–K42

    Google Scholar 

  70. Li X, Qu M, Yu Z (2009) Structural and electrochemical performances of Li4Ti5−xZrxO12 as anode material for lithium-ion batteries. J Alloy Compd 487:L12–L17

    Google Scholar 

  71. Li B, Han C, He Y-B et al (2012) Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ Sci 5:9595–9602

    Google Scholar 

  72. Zhu G-N, Wang C-X, Xia Y-Y (2011) A comprehensive study of effects of carbon coating on Li4Ti5O12 anode material for lithium-ion batteries. J Electrochem Soc 158(2):A102–A109

    Google Scholar 

  73. Hu X, Lin Z, Yang K et al (2011) Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction. Electrochim Acta 56:5046–5053

    Google Scholar 

  74. Luo H, Shen L, Rui K et al (2013) Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries. J Alloys Compds 572:37–42

    Google Scholar 

  75. Zhu G-N, Liu H-J, Zhang J-H et al (2011) Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ Sci 4:4016–4022

    Google Scholar 

  76. Jung H-G, Kim J, Scrosati B et al (2011) Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries. J Power Sources 196:7763–7766

    Google Scholar 

  77. Zhu Z, Cheng F, Chen J (2013) Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J Mater Chem A 1:9484–9490

    Google Scholar 

  78. Wang Y, Liu H, Wang K et al (2009) Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti (III) and carbon. J Mater Chem 19:6789–6795

    Google Scholar 

  79. Ding Z, Zhao L, Suo L et al (2011) Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study. Phys Chem Chem Phys 13:15127–15133

    Google Scholar 

  80. Guo X, Xiang HF, Zhou TP et al (2014) Morphologies and structures of carbon coated on Li4Ti5O12 and their effects on lithium storage performance. Electrochim Acta 130:470–476

    Google Scholar 

  81. Nugroho A, Chang W, Kim SJ et al (2012) Superior high rate performance of core-shell Li4Ti5O12/carbon nanocomposite synthesized by a supercritical alcohol approach. RSC Adv 2:10805–10808

    Google Scholar 

  82. Li H, Shen L, Yin K et al (2013) Facile synthesis of N-doped carbon-coated Li4Ti5O12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries. J Mater Chem A 1:7270–7276

    Google Scholar 

  83. Zhao L, Hu Y-S, Li H et al (2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater 23:1385–1388

    Google Scholar 

  84. Jung H-G, Myung S-T, Yoon CS et al (2011) Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ Sci 4:1345–1351

    Google Scholar 

  85. Shen L, Li H, Uchaker E et al (2012) General strategy for designing core-shell nanostructured materials for high-power lithium ion batteries. Nano Lett 12:5673–5678

    Google Scholar 

  86. Li CC, Li QH, Chen LB et al (2012) A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12 spheres for high-rate lithium-ion batteries. ACS Mater Interfaces 4:1233–1238

    Google Scholar 

  87. Krajewski M, Michalska M, Hamankiewicz B et al (2014) Li4Ti5O12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries. J Power Sources 245:764–771

    Google Scholar 

  88. Liu Z, Zhang N, Wang Z et al (2012) Highly dispersed Ag nanoparticles (<10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. J Power Sources 205:479–782

    Google Scholar 

  89. Cheng C, Liu H, Xue X et al (2014) Highly dispersed copper nanoparticle modified nano Li4Ti5O12 with high rate performance for lithium ion battery. Electrochim Acta 120:226–230

    Google Scholar 

  90. Feng X, Ding N, Dong Y et al (2013) A chromium oxide solution modified lithium titanium oxide with much improved rate performance. J Mater Chem A 1:15310–15315

    Google Scholar 

  91. Yang X, Huang Y, Wang X et al (2014) High rate capability core-shell lithium titanate@ceria nanosphere anode material synthesized by one-pot co-precipitation for lithium-ion batteries. J Power Sources 257:280–285

    Google Scholar 

  92. Wang D, Xu H-Y, Gu M et al (2009) Li2CuTi3O8-Li4Ti5O12 double spinel anode material with improved rate performance for Li-ion batteries. Electrochem Commun 11:50–53

    Google Scholar 

  93. Park K-S, Benayad A, Kang D-J et al (2008) Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J Am Chem Soc 130:14930–14931

    Google Scholar 

  94. Wan Z, Cai R, Jiang S et al (2012) Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance optimization. J Mater Chem 22:17773–17781

    Google Scholar 

  95. Cai R, Jiang S, Yu X et al (2012) A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature. J Mater Chem 22:8013–8021

    Google Scholar 

  96. Fang W, Zuo P, Ma Y et al (2013) Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery. Electrochim Acta 94:294–299

    Google Scholar 

  97. Shen L, Yuan C, Luo H et al (2011) In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries. J Mater Chem 21:761–767

    Google Scholar 

  98. Li X, Qu M, Huai Y et al (2010) Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery. Electrochim Acta 55:2978–2982

    Google Scholar 

  99. Oh Y, Nam S, Wi S et al (2014) Effective wrapping of graphene on individual Li4Ti5O12 grains for high-rate Li-ion batteries. J Mater Chem A 2:2023–2027

    Google Scholar 

  100. Shen L, Yuan C, Luo H et al (2011) In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale 3:572–574

    Google Scholar 

  101. Han SY, Kim IY, Jo KY et al (2012) Solvothermal-assisted hybridization between reduced graphene oxide and lithium metal oxides: a facile route to graphene-based composite materials. J Phys Chem C 116:7269–7279

    Google Scholar 

  102. Cai R, Yu X, Liu X et al (2010) Li4Ti5O12/Sn composite anodes for lithium-ion batteries: synthesis and electrochemical performance. J Power Sources 195:8244–8250

    Google Scholar 

  103. Han SY, Kim IY, Lee SH et al (2012) Electrochemically active nanocomposites of Li4Ti5O12 2D nanosheets and SnO2 0D nanocrystals with improved electrode performance. Electrochim Acta 74:59–64

    Google Scholar 

  104. Chem M, Li W, Shen X et al (2014) Fabrication of core–shell α-Fe2O3@Li4Ti5O12 composite and its application in the lithium ion batteries. ACS Appl Mater Interfaces 6:4514–4523

    Google Scholar 

  105. Hu M, Jiang Y, Yan M (2014) High rate Li4Ti5O12-Fe2O3 and Li4Ti5O12-CuO composite anodes for advanced lithium ion batteries. J Alloys Compds 603:202–206

    Google Scholar 

  106. Rahman MM, Wang J-Z, Hassan MF et al (2011) Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: a nanocomposite anode material for Li-ion batteries. Adv Energy Mater 1:212–220

    Google Scholar 

  107. Rahman MM, Wang JZ, Hassan MF et al (2010) Basic molten salt process-a new route for synthesis of nanocrystalline Li4Ti5O12-TiO2 anode material for Li-ion batteries using eutectic mixture of LiNO3-LiOH-Li2O2. J Power Sources 195:4297–4303

    Google Scholar 

  108. Hu YS, Kienle L, Guo YG et al (2006) High lithium electroactivity of nanometer-sized rutile TiO2. Adv Mater 18:1421–1426

    Google Scholar 

  109. Chen JS, Lou XW (2009) Anatase TiO2 nanosheet: an ideal host structure for fast and efficient lithium insertion/extraction. Electrochem Commun 11:2332–2335

    Google Scholar 

  110. Sushko ML, Rosso KM, Liu J (2010) Mechanism of Li+/electron conductivity in rutile and anatase TiO2 nanoparticles. J Phys Chem C 114:20277–20283

    Google Scholar 

  111. Wang Y-Q, Gu L, Guo Y-G et al (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 134:7874–7879

    Google Scholar 

  112. Chiu H-C, Brodusch N, Gauvin R et al (2013) Aqueous synthesized nanostructured Li4Ti5O12 for high-performance lithium ion battery anodes. J Electrochem Soc 160(5):A3041–A3047

    Google Scholar 

  113. Xiao L, Chen G, Sun J et al (2013) Facile synthesis of Li4Ti5O12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. J Mater Chem A 1:14618–14626

    Google Scholar 

  114. Song K, Seo D-H, Jo MR et al (2014) Tailored oxygen framework of Li4Ti5O12 nanorods for high-power Li ion battery. J Phys Chem Let 5:1368–1373

    Google Scholar 

  115. Li Y, Pan L, Liu JW et al (2009) Preparation of Li4Ti5O12 nanorods as anode materials for lithium-ion batteries. J Electrochem Soc 156(7):A495–A499

    Google Scholar 

  116. Lee SC, Lee SM, Lee JW et al (2009) Spinel Li4Ti5O12 nanotubes for energy storage materials. J Phys Chem C 113:18420–18423

    Google Scholar 

  117. Kim J, Cho J (2007) Spinel Li4Ti5O12 nanowires for high-rate Li-ion intercalation electrode. Electrochem Solid-State Let 10(3):A81–A84

    Google Scholar 

  118. Chou S-L, Wang J-Z, Liu H-K et al (2011) Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J Phys Chem C 115:16220–16227

    Google Scholar 

  119. Zhang Z, Li G, Peng H et al (2013) Hierarchical hollow microspheres assembled from N-doped carbon coated Li4Ti5O12 nanosheets with enhanced lithium storage properties. J Mater Chem A 1:15429–15434

    Google Scholar 

  120. Tang YF, Yang L, Qiu Z et al (2008) Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets. Electrochem Commun 10:1513–1516

    Google Scholar 

  121. Lin Y-S, Tsai M-C, Duh J-G (2012) Self-assembled synthesis of nanoflower-like Li4Ti5O12 for ultrahigh rate lithium-ion batteries. J Power Sources 214:314–318

    Google Scholar 

  122. Fattakhova D, Krtil P (2002) Electrochemical activity of hydrothermally synthesized Li-Ti-O cubic oxides toward Li insertion. J Electrochem Soc 149(9):A1224–A1229

    Google Scholar 

  123. Lim J, Choi E, Mathew V et al (2011) Enhanced high-rate performance of Li4Ti5O12 nanoparticles for rechargeable Li-ion batteries. J Electrochem Soc 158(3):A275–A280

    Google Scholar 

  124. Feckl JM, Fominykh K, Doblinger M et al (2012) Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew Chem 124:7577–7581

    Google Scholar 

  125. Yu L, Wu HB, Lou XW (2013) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25:2296–2300

    Google Scholar 

  126. Li D, Mccann JT, Xia Y et al (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Chem Soc 89(6):1861–1869

    Google Scholar 

  127. Xu H, Hu X, Luo W et al (2014) Electrospun conformal Li4Ti5O12/C fibers for high-rate lithium-ion batteries. ChemElectroChem 1:611–616

    Google Scholar 

  128. Liu J, Tang K, Song K et al (2013) Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. Phys Chem Chem Phys 15:20813–20818

    Google Scholar 

  129. Chen S, Xin Y, Zhou Y et al (2014) Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ Sci 7:1924–1930

    Google Scholar 

  130. Liu J, Song K, van Aken PA et al (2014) Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett 14:2597–2603

    Google Scholar 

  131. Amine K, Belharouak I, Chen Z et al (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22:3052–3057

    Google Scholar 

  132. Lin C, Fan X, Xin Y et al (2014) Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances. Nanoscale 6:6651–6660

    Google Scholar 

  133. Shen L, Yuan C, Luo H et al (2010) Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J Mater Chem 20:6998–7004

    Google Scholar 

  134. Pasquier AD, Plitz I, Menocal S et al (2003) A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J Power Sources 115:171–178

    Google Scholar 

  135. Belharouak I, Koenig GM, Tan T et al (2012) Performance degradation and gassing of Li4Ti5O12/LiMn2O4 lithium-ion cells. J Electrochem Soc 159(8):A1165–A1170

    Google Scholar 

  136. Qin Y, Chen Z, Amine K (2011) Functionalized surface modification agents to suppress gassing issue of Li4Ti5O12-based lithium-ion chemistry. In: Fiscal year 2011 annual progress for report energy storge R&D, U.S. Department of Energy, Washington, D.C., p 321

    Google Scholar 

  137. He Y-B, Liu M, Huang Z-D et al (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269–276

    Google Scholar 

  138. Wu K, Yang J, Liu Y et al (2013) Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature. J Power Sources 237:285–290

    Google Scholar 

  139. Wu K, Yang J, Zhang Y et al (2012) Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle. J Appl Electrochem 42:989–995

    Google Scholar 

  140. Qin Y, Chen Z, Amine K (2012) Functionalized surface modification agents to suppress gassing issue of Li4Ti5O12-based lithium-ion chemistry. In: Fiscal year 2012 annual progress for report energy storge R&D, U.S. Department of Energy, Washington, D.C., p 363

    Google Scholar 

  141. Kitta M, Akita T, Maeda Y et al (2012) Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Langmuir 28(33):12384–12392

    Google Scholar 

  142. He Y-B, Ning F, Li B et al (2012) Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. J Power Sources 202:253–261

    Google Scholar 

  143. Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    Google Scholar 

  144. Zhao L, Pan H-L, Hu Y-S et al (2012) Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chin Phys B 21(2):028201

    Google Scholar 

  145. Sun Y, Zhao L, Pan H et al (2013) Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun 4:1870

    Google Scholar 

  146. Yu X, Pan H, Wan W et al (2013) A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. Nano Lett 13:4721–4727

    Google Scholar 

  147. Yu P, Li C, Guo X (2014) Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films. J Phys Chem C 118:10616–10624

    Google Scholar 

  148. Wang J, Li W, Yang Z et al (2014) Free-standing and binder-free sodium-ion electrodes based on carbon-nanotube decorated Li4Ti5O12 nanoparticles embedded in carbon nanofibers. RSC Adv 4:25220–25226

    Google Scholar 

  149. Yi T-F, Jiang L-J, Shu J et al (2010) Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J Phys Chem Solids 71(9):1236–1242

    Google Scholar 

  150. Wu HM, Belharouak I, Deng H et al (2009) Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life. J Electrochem Soc 156(12):A1047–A1050

    Google Scholar 

  151. Xiang HF, Zhang X, Jin QY et al (2008) Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J Power Sources 183:355–360

    Google Scholar 

  152. Li SR, Chen CH, Xia X et al (2013) The impact of electrolyte oxidation products in LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J Electrochem Soc 160(9):A1524–A1528

    Google Scholar 

  153. Dedryvère R, Foix D, Franger S et al (2010) Electrode/electrolyte reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 lithium-ion battery. J Phys Chem C 114:10999–11008

    Google Scholar 

  154. Kim J-H, Pieczonka NPW, Sun Y-K et al (2014) Improved lithium-ion battery performance of LiNi0.5Mn1.5−xTixO4 high voltage spinel in full-cells paired with graphite and Li4Ti5O12 negative electrodes. J Power Sources 262:62–71

    Google Scholar 

  155. https://www.toshiba.com/tic/industrial/rechargable-battery

  156. Jaiswal A, Horne CR, Chang O et al (2009) Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries. J Electrochem Soc 156(12):A1041–A1046

    Google Scholar 

  157. Borgel V, Gershinsky G, Hu T et al (2013) LiMn0.8Fe0.2PO4/Li4Ti5O12, a possible Li-Ion battery system for load-leveling application. J Electrochem Soc 160(4):A650–A657

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailei Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, H. (2015). Lithium Titanate-Based Anode Materials. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics