Skip to main content

Carbonaceous Anode Materials

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

  • 6864 Accesses

Abstract

The use of the engineered carbon materials as an anode allowed the lithium ion batteries (LIBs) to achieve a large advance in the last decade. The performance of LIBs strongly depends on the microtexture of the carbon materials. Due to the contribution of the carbon materials, the electrochemical performance of the LIBs has been improved almost double for the last 10 years. Thus, intensive work has focused on the identification of key factors of carbon materials that can improve anode performance. Recently, there is the active work on the development of nanosized carbon materials (e.g., carbon nanotube and graphene). In this chapter, we describe the correlation between the microstructural parameters and anode performance of conventional and novel types of carbon materials for Li ion batteries by connecting with the market demand and the trends in Li ion secondary batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics 69:173–183

    Article  Google Scholar 

  2. Delhaes P, Manceau KP, Guerard D (1980) Physical properties of first and second stage lithium graphite intercalation compounds. Synth Met 2:277–284

    Article  Google Scholar 

  3. Kang K, Meng YS, Breger J et al (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980

    Article  Google Scholar 

  4. Takada K, Ohta N, Zhang L et al (2008) Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics 179:1333–1337

    Article  Google Scholar 

  5. Wen Z, Huang S, Yang X et al (2008) High rate electrode materials for lithium ion batteries. Solid State Ionics 179:1800–1805

    Article  Google Scholar 

  6. Endo M, Kim C, Nishimura K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38:183–197

    Article  Google Scholar 

  7. Oberlin A (1989) TEM studies of carbonization and graphitization. In: Thrower PA (ed) Chemistry and physics of carbon, vol 22. Marcel Dekker, New York, pp 1–143

    Google Scholar 

  8. Imanishi N, Takeda Y, Yamamoto O (1998) Development of the carbon anode in lithium ion batteries. In: Wakihara M (ed) Lithium ion batteries: fundamentals and performance. Wiley-VCH, New York, pp 1–98

    Google Scholar 

  9. Edwards IAS (1997) Structure in carbons and carbon forms. In: Marsh H (ed) Introduction to carbon science. Butterworth-Heinemann, Portland, pp 1–36

    Google Scholar 

  10. Sato K, Noguchi M, Demachi A et al (1994) A mechanism of lithium storage in disordered carbons. Science 264:556–558

    Article  Google Scholar 

  11. Fujimoto H, Mabuchi A, Tokumitsu K (1995) Irreversible capacity of lithium secondary battery using meso-carbon micro beads as anode material. J Power Sour 54:440–443

    Article  Google Scholar 

  12. Dahn JR, Zheng T, Liu Y et al (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–593

    Article  Google Scholar 

  13. Yazami R, Munshi MZA (1995) Novel anodes for solid state batteries. In: Munshi MZA (ed) Handbook of solid state batteries and capacitors. World Scientific, Singapore, pp 425–460

    Chapter  Google Scholar 

  14. Zhou P, Papanek P, Lee R et al (1997) Local structure and vibrational spectroscopy of disordered carbon for Li batteries: neutron scattering studies. J Electrochem Soc 144:1744–1750

    Article  Google Scholar 

  15. Endo M, Nishimura Y, Takahashi T et al (1996) Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery. J Phys Chem Solids 57:725–728

    Article  Google Scholar 

  16. Endo M, Kim C, Hiraoka T et al (1998) Li storage behavior in polyparaphenylene (PPP)-based disordered carbon as a negative electrode for Li ion batteries. Mol Cryst Liq Cryst 310:353–358

    Article  Google Scholar 

  17. Mabuchi A, Tokumitsu K, Fujimoto H (1995) Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures. J Electrochem Soc 142:1041–1046

    Article  Google Scholar 

  18. Zheng T, Zhong Q, Dahn JR (1995) High-capacity carbons prepared from phenolic resin for anodes of lithium-ion batteries. J Electrochem Soc 142:L211–L214

    Article  Google Scholar 

  19. Matsumura Y, Wang S, Mondori J (1995) Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 33:1457–1462

    Article  Google Scholar 

  20. Kovacic P, Kyriakis A (1963) Polymerization of benzene to p-polyphenyl by aluminum chloride-cupric chloride. J Am Chem Soc 85:454–458

    Article  Google Scholar 

  21. Yamamoto T, Hayashi Y, Yamamoto A (1978) A novel type of polycondensation utilizing transition metal-catalyzed C–C coupling I: preparation of thermostable polyphenylene type polymers. Bull Chem Soc Japan 51:2091–2097

    Article  Google Scholar 

  22. Villar-odil S, Suarez-garcia F, Paredes JI et al (2005) Activated carbon materials of uniform porosity form polyaramid fibers. Chem Mater 17:5893–5908

    Article  Google Scholar 

  23. Ko KS, Park CW, Yoon SH et al (2001) Preparation of Kevlar-derived carbon fibers and their anodic performances in Li secondary batteries. Carbon 39:1619–1625

    Article  Google Scholar 

  24. Zheng T, Xing W, Dahn JR (1996) Carbons prepared from coals for anodes of lithium-ion cells. Carbon 34:1501–1507

    Article  Google Scholar 

  25. Kim WS, Chung KI, Lee CB et al (2002) Studies on heat-treated MPCF anodes in Li ion batteries. Microchem J 72:185–192

    Article  Google Scholar 

  26. Takami N, Satoh A, Hara M et al (1995) Rechargeable lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes. J Electrochem Soc 142:2564–2571

    Article  Google Scholar 

  27. Tatsumi K, Iwashita N, Sakaebe H et al (1995) The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. J Electrochem Soc 142:716–720

    Article  Google Scholar 

  28. Ohzuku T, Iwakoshi Y, Sawai K (1993) Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J Electrochem Soc 140:2490–2498

    Article  Google Scholar 

  29. Yoshito I (2006) Carbon anode material for lithium-ion rechargeable battery. Tanso 225:382–390

    Google Scholar 

  30. Ishii Y, Fujita A, Nishida T et al (2001) High-performance anode material for lithium-ion rechargeable battery. Hitachi Chem Tech Rep 36:27–32

    Google Scholar 

  31. Ishii Y, Nishida T, Suda S et al (2006) Anode material for high energy density rechargeable lithium-ion battery. Hitachi Chem Tech Rep 47:29–32

    Google Scholar 

  32. Lowell CE (1967) Solid solution of boron in graphite. J Am Ceram Soc 50:142–144

    Article  Google Scholar 

  33. Kouvetakis J, Kaner RB, Sattler ML et al (1986) A novel graphite-like material of composition BC3, and nitrogen–carbon graphites. J Chem Soc Chem Commun 24:1758–1759

    Article  Google Scholar 

  34. Marchand A (1971) Electronic properties of doped carbons. In: Walker PL (ed) Chemistry and physics of carbon, vol 7. Marcel Dekker, New York, pp 155–191

    Google Scholar 

  35. Nakajima T, Koh K, Takashima M (1998) Electrochemical behavior of carbon alloy CxN prepared by CVD using a nickel catalyst. Electrochim Acta 43:883–891

    Article  Google Scholar 

  36. Nishimura Y, Yakahashi T, Tamaki T et al (1996) Anode performance of B-doped mesophase pitch-based carbon fibers in lithium ion secondary batteries. Tanso 172:89–94

    Article  Google Scholar 

  37. Endo M, Hayashi T, Hong SH et al (2001) Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. J Appl Phys 90:5670–5674

    Article  Google Scholar 

  38. Endo M, Oshida K, Kobori K et al (1995) Evidence for glide and rotation defects observed in well-ordered graphite fibers. J Mater Res 10:1461–1468

    Article  Google Scholar 

  39. Hach CT, Jones LE, Crossland C et al (1999) An investigation of vapor deposited boron rich carbon-a novel graphite-like material–part I: the structure of BCx (C6B) thin films. Carbon 37:221–230

    Article  Google Scholar 

  40. Matthews MJ, Dresselhaus MS, Dresselhaus G et al (1996) Magnetic alignment of mesophase pitch-based carbon fibers. Appl Phys Lett 69:430–432

    Article  Google Scholar 

  41. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  42. Nalimova VA, Sklovsky DE, Bondarenko GN et al (1997) Lithium interaction with carbon nanotubes. Synth Met 88:89–93

    Article  Google Scholar 

  43. Lee JH, Kim GS, Choi YM et al (2008) Comparison of multiwalled carbon nanotubes and carbon black as percolative paths in aqueous-based natural graphite negative electrodes with high-rate capability for lithium-ion batteries. J Power Sour 184:308–311

    Article  Google Scholar 

  44. Frackowiak E, Gautier S, Gaucher H et al (1999) Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37:61–69

    Article  Google Scholar 

  45. Maurin G, Bousquet Ch, Henn F et al (1999) Electrochemical intercalation of lithium into multiwall carbon nanotubes. Chem Phys Lett 312:14–18

    Article  Google Scholar 

  46. Leroux F, Metenier K, Gautier S et al (1999) Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes. J Power Sour 81–82:317–322

    Article  Google Scholar 

  47. Lu W, Chung DDL (2001) Anodic performance of vapor-derived carbon filaments in lithium-ion secondary battery. Carbon 39:493–496

    Article  Google Scholar 

  48. Yang Z, Wu HQ, Simard B (2002) Charge-discharge characteristics of raw acid-oxidized carbon nanotubes. Electrochem Commun 4:574–578

    Article  Google Scholar 

  49. Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–1787

    Article  Google Scholar 

  50. Shin HC, Liu M, Sadanadan B et al (2002) Electrochemical insertion of lithium into multi-walled carbon nanotubes prepared by catalytic decomposition. J Power Sour 112:216–221

    Article  Google Scholar 

  51. Chen WX, Lee JY, Liu Z (2003) The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes. Carbon 41:959–966

    Article  Google Scholar 

  52. Yoon SH, Park CW, Yang HJ et al (2004) Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries. Carbon 42:21–32

    Article  Google Scholar 

  53. Wang X, Liu H, Jin Y et al (2006) Polymer-functionalized multiwalled carbon nanotubes as lithium intercalation hosts. J Phys Chem B 110:10236–10240

    Article  Google Scholar 

  54. Deng D, Lee JY (2007) One-step synthesis of polycrystalline carbon nanofibers with periodic dome-shaped interiors and their reversible lithium ion storage properties. Chem Mater 19:4198–4204

    Article  Google Scholar 

  55. Park MS, Needham SA, Wang GX et al (2007) Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries. Chem Mater 19:2406–2410

    Article  Google Scholar 

  56. Chen Liu Y, Minett AI et al (2007) Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem Mater 19:3593–3597

    Google Scholar 

  57. Garau C, Frontera A, Quiñonero D et al (2004) Ab initio investigations of lithium diffusion in single-walled carbon nanotubes. Chem Phys 297:85–91

    Article  Google Scholar 

  58. Claye AS, Fischer JE, Huffman CB et al (2000) Solid-state electrochemistry of the Li single wall carbon nanotube system. J Electrochem Soc 147:2845–2852

    Article  Google Scholar 

  59. Jouguelet E, Mathis C, Petit P (2000) Controlling the electronic properties of single-wall carbon nanotubes by chemical doping. Chem Phys Lett 318:561–564

    Article  Google Scholar 

  60. Gao B, Bower C, Lorentzen JD et al (2000) Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 327:69–75

    Article  Google Scholar 

  61. Yang ZH, Wu HQ (2001) The electrochemical impedance measurements of carbon nanotubes. Chem Phys Lett 343:235–240

    Article  Google Scholar 

  62. Morris RS, Dixon BG, Gennett T et al (2004) High-energy, rechargeable Li-ion battery based on carbon nanotube technology. J Power Sour 138:277–280

    Article  Google Scholar 

  63. Ng SH, Wang J, Guo ZP et al (2005) Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim Acta 51:23–28

    Article  Google Scholar 

  64. Udomvech A, Kerdcharoen T, Osotchan T (2005) First principles study of Li and Li+ adsorbed on carbon nanotube: variation of tubule diameter and length. Chem Phys Lett 406:161–166

    Article  Google Scholar 

  65. Wu GT, Wang CS, Zhang XB et al (1998) Lithium insertion into CuO/carbon nanotubes. J Power Sour 75:175–179

    Article  Google Scholar 

  66. Gao B, Kleinhammes A, Tang XP et al (1997) Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem Phys Lett 307:153–157

    Article  Google Scholar 

  67. Zhou O, Fleming RM, Murphy DW et al (1994) Defects in carbon nanostructures. Science 263:1744–1747

    Article  Google Scholar 

  68. Suzuki S, Tomita M (1996) Observation of potassium-intercalated carbon nanotubes and their valence-band excitation spectra. J Appl Phys 79:3739–3743

    Article  Google Scholar 

  69. Endo M, Muramatsu H, Hayashi T et al (2005) Buckypaper’ from coaxial nanotubes. Nature 433:476

    Article  Google Scholar 

  70. Muramatsu H, Hayashi T, Kim YA et al (2005) Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. Chem Phys Lett 414:444–448

    Article  Google Scholar 

  71. Kim YA, Kojima M, Muramatsu H et al (2006) In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. Small 2:667–676

    Article  Google Scholar 

  72. Miyamoto J, Hattori Y, Noguchi D et al (2006) Efficient H2 adsorption by nanopores of high-purity double-walled carbon nanotubes. J Am Chem Soc 128:12636–12637

    Article  Google Scholar 

  73. Tibbetts GG (1983) Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl Phys Lett 42:666–668

    Article  Google Scholar 

  74. Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349

    Article  Google Scholar 

  75. Tibbetts GG, Gorkiewicz DW, Alig RL (1993) A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons. Carbon 31:809–814

    Article  Google Scholar 

  76. Endo M, Kim YA, Hayashi T et al (2001) Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon 39:1287–1297

    Article  Google Scholar 

  77. Sotowa C, Origi G, Takeuchi M et al (2008) The reinforcing effect of combined carbon nanotubes and acetylene blacks on the cathode electrode of lithium ion batteries. ChemSusChem 1:911–915

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoong Ahm Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, Y.A., Kim, Y.J., Endo, M. (2015). Carbonaceous Anode Materials. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics