Skip to main content

2D and 3D Imaging of Li-Ion Battery Materials Using Synchrotron Radiation Sources

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Characterization of microstructural properties in electrodes for Li-Ion batteries can be regarded a key factor to understand functionality and aging process in the cells. X-ray microscopy has proven extremely powerful to capture a number of morphological parameters such as porosity, tortuosity or particle size distribution but also chemical information regarding phase distribution, state of charge or elemental migration over a large range of length scales. With their high penetration power utilizing various contrast methods X-rays offer deep insight into the battery materials and microstructural characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanida H, Fukuda K, Murayama H et al (2014) RISING beamline (BL28XU) for rechargeable battery analysis. J Synchrotron Radiat 21:268–272. doi:10.1107/S1600577513025733

    Article  Google Scholar 

  2. Stephenson DE, Walker BC, Skelton CB et al (2011) Modeling 3D microstructure and ion transport in porous li-ion battery electrodes. J Electrochem Soc 158:A781. doi:10.1149/1.3579996

    Article  Google Scholar 

  3. Harris SJ, Lu P (2013) Effects of inhomogeneities—nanoscale to mesoscale—on the durability of li-ion batteries. J Phys Chem C 117:6481–6492

    Article  Google Scholar 

  4. Ebner M, Marone F, Stampanoni M, Wood V (2013) Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342:716–720. doi:10.1126/science.1241882

    Article  Google Scholar 

  5. Ebner M, Chung D-W, Garcia ER, Wood V (2014) Toruosity anisotropy in lithium-ion battery electrodes. Adv Energy Mater 4:1301278

    Google Scholar 

  6. Thiedmann R, Stenzel O, Spettl A et al (2011) Stochastic simulation model for the 3D morphology of composite materials in Li–ion batteries. Comput Mater Sci 50:3365–3376. doi:10.1016/j.commatsci.2011.06.031

    Article  Google Scholar 

  7. Ender M, Joos J, Weber A, Ivers-Tiffée E (2014) Anode microstructures from high-energy and high-power lithium-ion cylindrical cells obtained by X-ray nano-tomography. J Power Sources 269:912–919

    Article  Google Scholar 

  8. Shao M (2014) In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials. J Power Sources 270:475–486. doi:10.1016/j.jpowsour.2014.07.123

    Article  Google Scholar 

  9. Andrews JC, Weckhuysen BM (2013) Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. ChemPhysChem 14:3655–3666

    Article  Google Scholar 

  10. Shapiro DA, Yu Y-S, Tyliszczak T et al (2014) Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat Photonics 1–5. doi:10.1038/nphoton.2014.207

  11. Fitzgerald R (2000) Phase -sensitive X-ray imaging. Phys Today 23:23–26

    Article  Google Scholar 

  12. Burvall A, Lundström U, Takman Pac et al (2011) Phase retrieval in X-ray phase-contrast imaging suitable for tomography. Opt Express 19:10359–10376

    Article  Google Scholar 

  13. Schroer CG, Cloetens P, Rivers M et al (2004) High-resolution 3D imaging microscopy using hard X-rays. MRS Bull 29:157–165

    Article  Google Scholar 

  14. Eastwood DS, Bradley RS, Tariq F et al (2014) The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 324:118–123. doi:10.1016/j.nimb.2013.08.066

    Article  Google Scholar 

  15. Lin C-N, Chen W-C, Song Y-F et al (2014) Understanding dynamics of polysulfide dissolution and re-deposition in working lithium-sulfur battery by in-operando transmission X-ray microscopy. J Power Sources 263:98–103

    Article  Google Scholar 

  16. Bunker G (2010) Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. Koningsberger DC, Prins R (1988) X-Ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley-Interscience, New York

    Google Scholar 

  18. Shearing P, Wu Y, Harris SJ, Brandon N (2011) In situ X-Ray spectroscopy and imaging of battery materials. Electrochem Soc Interface 20:43–47

    Google Scholar 

  19. McBreen J, O’Grady WE, Pandya KI (1988) EXAFS: a new tool for the study of battery and fuel cell materials. J Power Sources 22:323–340. doi:10.1016/0378-7753(88)80027-2

    Article  Google Scholar 

  20. Meirer F, Cabana J, Liu Y et al (2011) Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J Synchrotron Radiat 18:773–781. doi:10.1107/S0909049511019364

    Article  Google Scholar 

  21. Liu Y, Meirer F, Williams Pa et al (2012) TXM-wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy. J Synchrotron Radiat 19:281–287. doi:10.1107/S0909049511049144

    Article  Google Scholar 

  22. Dinnebier RE, Billinge SJL (2008) Powder diffraction—theory and practice. RSC Publishing

    Google Scholar 

  23. Reinsberg K-G, Schumacher C, Zastrow S et al (2013) Investigation on the homogeneity of pulsed electrochemically deposited thermoelectric films with synchrotron μ-XRF, μ-XRD and μ-XANES. J Mater Chem A 1:4215–4220. doi:10.1039/c3ta01480k

    Article  Google Scholar 

  24. Janssens KHA, Adams FCV, Rindby A (1999) Microscopic X-ray fluorescence analysis. Wiley, New York

    Google Scholar 

  25. Radtke M, Buzanich G, Curado J et al (2014) Slicing—a new method for non destructive 3D elemental sensitive characterization of materials. J Anal At Spectrom 29:1339–1344. doi:10.1039/C4JA00085D

    Article  Google Scholar 

  26. Scharf O, Ihle S, Ordavo I et al (2011) Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera. Anal Chem 83:2532–2538

    Article  Google Scholar 

  27. Boone MN, Garrevoet J, Tack P et al (2014) High spectral and spatial resolution X-ray transmission radiography and tomography using a color X-ray camera. Nucl Instrum Methods Phys Res A 735:644–648. doi:10.1016/j.nima.2013.10.044

    Article  Google Scholar 

  28. Falcone R, Jacobsen C, Kirz J et al (2011) New directions in X-ray microscopy. Contemp Phys 52:293–318. doi:10.1080/00107514.2011.589662

    Article  Google Scholar 

  29. Gonzalez-Jimenez ID, Cats K, Davidian T et al (2012) Hard X-ray nanotomography of catalytic solids at work. Angew Chem Int Ed Engl 51:11986–11990. doi:10.1002/anie.201204930

    Article  Google Scholar 

  30. Sakdinawat A, Attwood D (2010) Nanoscale X-ray imaging. Nat Photonics 4:840–848. doi:10.1038/nphoton.2010.267

    Article  Google Scholar 

  31. De Jonge MD, Vogt S (2010) Hard X-ray fluorescence tomography–an emerging tool for structural visualization. Curr Opin Struct Biol 20:606–614. doi:10.1016/j.sbi.2010.09.002

    Article  Google Scholar 

  32. De Nolf W, Janssens K (2009) Micro X-ray diffraction and fluorescence tomography for the study of multilayered automotive paints. Surf Interface Anal 42:411–418

    Article  Google Scholar 

  33. Larson BC, Yang W, Ice GE et al (2002) Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415:887–890. doi:10.1038/415887a

    Article  Google Scholar 

  34. Schropp A, Hoppe R, Patommel J et al (2012) Hard x-ray scanning microscopy with coherent radiation: beyond the resolution of conventional X-ray microscopes. Appl Phys Lett 100:253112. doi:10.1063/1.4729942

    Article  Google Scholar 

  35. Dam HF, Andersen TR, Pedersen EBL et al (2014) Enabling flexible polymer tandem solar cells by 3D ptychographic imaging. Adv Energy Mater n/a–n/a. doi:10.1002/aenm.201400736

  36. Holler M, Diaz A, Guizar-Sicairos M et al (2014) X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution. Sci Rep 4:3857. doi:10.1038/srep03857

    Article  Google Scholar 

  37. Cotte M, Susini J, Dik J, Janssens K (2010) Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 43:705–714

    Google Scholar 

  38. Andrews JC, Almeida E, Van Der Meulen MCH et al (2010) Nanoscale X-Ray microscopic imaging of mammalian mineralized tissue. Microsc Microanal 16:327–336

    Google Scholar 

  39. Cocco AP, Nelson GJ, Harris WM et al (2013) Three-dimensional microstructural imaging methods for energy materials. Phys Chem Chem Phys 15:16377–16407. doi:10.1039/c3cp52356j

    Article  Google Scholar 

  40. Liu Y, Meirer F, Wang J et al (2012) 3D elemental sensitive imaging using transmission X-ray microscopy. Anal Bioanal Chem 404:1297–1301. doi:10.1007/s00216-012-5818-9

    Article  Google Scholar 

  41. Nelson J, Misra S, Yang Y et al (2012) In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J Am Chem Soc 134:6337–6343. doi:10.1021/ja2121926

    Article  Google Scholar 

  42. Kanitpanyacharoen W, Parkinson DY, De Carlo F et al (2013) A comparative study of X-ray tomographic microscopy on shales at different synchrotron facilities: ALS, APS and SLS. J Synchrotron Radiat 20:172–180. doi:10.1107/S0909049512044354

    Article  Google Scholar 

  43. Yuan L-X, Wang Z-H, Zhang W-X et al (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269. doi:10.1039/c0ee00029a

    Article  Google Scholar 

  44. Shearing PR, Howard LE, Jørgensen PS et al (2010) Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem Commun 12:374–377. doi:10.1016/j.elecom.2009.12.038

    Article  Google Scholar 

  45. Shearing PR, Brandon NP, Gelb J et al (2012) Multi length scale microstructural investigations of a commercially available Li-ion battery electrode. J Electrochem Soc 159:A1023–A1027

    Article  Google Scholar 

  46. Eastwood DS, Yufit V, Gelb J et al (2014) Lithiation-induced dilation mapping in a lithium-ion battery electrode by 3D X-Ray microscopy and digital volume correlation. Adv Energy Mater 4:1300506

    Google Scholar 

  47. Channagiri Sa, Nagpure SC, Babu SS et al (2013) Porosity and phase fraction evolution with aging in lithium iron phosphate battery cathodes. J Power Sources 243:750–757. doi:10.1016/j.jpowsour.2013.06.023

    Article  Google Scholar 

  48. Chen-Wiegart YK, Liu Z, Faber KT et al (2013) 3D analysis of a LiCoO2–Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nano-tomography. Electrochem Commun 28:127–130. doi:10.1016/j.elecom.2012.12.021

    Article  Google Scholar 

  49. Chao S-C, Yen Y-C, Song Y-F et al (2011) In situ transmission X-ray microscopy study on working SnO anode particle of Li-ion batteries. J Electrochem Soc 158:A1335–A1339

    Article  Google Scholar 

  50. Chao S-C, Yen Y-C, Song Y-F et al (2010) A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy. Electrochem Commun 12:234–237. doi:10.1016/j.elecom.2009.12.002

    Article  Google Scholar 

  51. Weker JN, Liu N, Misra S et al (2014) In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles. Energy Environ Sci 7:2771. doi:10.1039/C4EE01384K

    Article  Google Scholar 

  52. Wang J, Chen-Wiegart YK, Wang J (2013) In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging. Chem Commun (Camb) 49:6480–6482. doi:10.1039/c3cc42667j

    Article  Google Scholar 

  53. Ebner M, Geldmacher F, Marone F et al (2013) X-Ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv Energy Mater 3:845–850

    Article  Google Scholar 

  54. Wang J, Chen-Wiegart YK, Wang J (2014) In situ three-dimensional synchrotron X-ray nanotomography of (de)lithiation processes in tin anodes. Angew Chem Int Ed 53:4460–4464

    Article  Google Scholar 

  55. Zielke L, Hutzenlaub T, Wheeler DR et al (2014) A combination of X-ray tomography and carbon binder modeling: reconstructing the three phases of LiCoO2 Li-ion battery cathodes. Adv Energy Mater 4:1301617

    Google Scholar 

  56. Boesenberg U, Meirer F, Liu Y et al (2013) Mesoscale phase distribution in single particles of LiFePO4 following lithium deintercalation. Chem Mater 25:1664–1672. doi:10.1021/cm400106k

    Article  Google Scholar 

  57. Chueh WC, El Gabaly F, Sugar JD et al (2013) Intercalation pathway in many-particle LiFePO(4) electrode revealed by nanoscale state-of-charge mapping. Nano Lett 13:866–872. doi:10.1021/nl3031899

    Article  Google Scholar 

  58. Wang J, Chen-Wiegart YK, Wang J (2014) In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy. Nat Commun 5:1–10. doi:10.1038/ncomms5570

    Article  Google Scholar 

  59. Chen-Wiegart YK, Wang J, Wang J (2013) Development of in situ full field spectroscopic imaging analysis and application on Li-ion battery using transmission X-ray microscopy. Proceediongs of the SPIE 8851, X-Ray Nanoimaging Instruments Methods. p 88510C

    Google Scholar 

  60. Yang F, Liu Y, Martha SK et al (2014) Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling. Nano Lett 14:4334–4341. doi:10.1021/nl502090z

    Article  Google Scholar 

  61. Sun Y-K, Chen Z, Noh H-J et al (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11:942–947. doi:10.1038/nmat3435

    Article  Google Scholar 

  62. Poulsen HF, Jensen DJ, Vaughan GBM (2004) Three-dimensional X-Ray diffraction microscopy using high-energy X-Rays. MRS Bull 29:166–169

    Article  Google Scholar 

  63. Bleuet P, Welcomme E, Dooryhée E et al (2008) Probing the structure of heterogeneous diluted materials by diffraction tomography. Nat Mater 7:468–472. doi:10.1038/nmat2168

    Article  Google Scholar 

  64. Liu J, Kunz M, Chen K et al (2010) Visualization of charge distribution in a lithium battery electrode. J Phys Chem Lett 1:2120–2123. doi:10.1021/jz100634n

    Article  Google Scholar 

  65. Robert R, Zeng D, Lanzirotti A et al (2012) Scanning X-ray fluorescence imaging study of lithium insertion into copper based oxysulfides for Li-Ion batteries. Chem Mater 24:2684–2691

    Article  Google Scholar 

  66. Singer A, Ulvestad A, Cho H et al (2014) Noequilibrium structural dynamics of nanoparticles in LiNi1/2Mn3/2O4 cathode under operando conditions. Nano Lett, ASAP

    Google Scholar 

  67. Ulvestad A, Singer A, Cho H-M et al (2014) Single Particle Nanomechanics in operando batteries via lensless strain mapping. Nano Lett. doi:10.1021/nl501858u

    Google Scholar 

  68. Fittschen U, Boesenberg U, Falk M et al (2014) Confocal XRF imaging of elemental deposition of Mn, Ni and Cu on the graphite anode in cycled LiNi0.5Mn1.5O4 /graphite full cells. Anka Annual Report

    Google Scholar 

  69. Menzel M, Schlifke A, Falk M et al (2013) Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis. Spectrochim Acta Part B At Spectrosc 85:62–70. doi:10.1016/j.sab.2013.04.001

    Article  Google Scholar 

  70. Boesenberg U,  Falk M, Fittschen UEA et al (2015) Correlation between chemical and morphological heterogeneities in  LiNi0.5Mn1.5O4 spinel composite electrodes for lithium-Ion batteries determined by Micro-X-ray Fluorescence Analysis, Chemistry of Materials, doi:10.1021/acs.chemmater.5b00119

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula E. A. Fittschen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boesenberg, U., Fittschen, U.E.A. (2015). 2D and 3D Imaging of Li-Ion Battery Materials Using Synchrotron Radiation Sources. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics