Skip to main content

Manufacture and Surface Modification of Polyolefin Separator

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Separator is an indispensable component for the liquid electrolyte battery, which absorbs liquid electrolyte for necessary ionic conductivity and isolates two electrodes from coming into contact. In a battery, the separator does not participate in any electrochemical reaction; however, it greatly affects the battery’s performance, particularly the rate capability and safety. The separator currently used in state-of-the-art Li-ion batteries is typically a microporous polyolefin membrane whose pores are formed either by a dry process or by a wet process. For improved cyclability and safety of the batteries, surface modification has been further used to enhance the uptake and uphold of liquid electrolyte as well as the mechanical strength of the membrane, especially at elevated temperatures. In this chapter, the manufacturing properties and surface modifications of polyolefin-based battery separators are reviewed, and the membrane property differences by the pore-forming process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  2. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462

    Article  Google Scholar 

  3. Nagou S, Nakamura S (1988) Microporous film and process for production thereof. US Patent 4,791,144

    Google Scholar 

  4. Lee SY, Ahn BI, Im SG, Park SY, Song HS, Kyung YJ (2004) High crystalline polypropylene microporous membrane, multi-component microporous membrane and methods for preparing the same. US Patent 6,830,849

    Google Scholar 

  5. Higuchi H, Matsushita K, Ezoe H, Shinomura T (1995) Porous film, process for producing the same, and use of the same. US Patent 5,385,777

    Google Scholar 

  6. Johnson MB, Wilkes GL (2001) Microporous membranes of polyoxymethylene from a melt-extrusion process: (I) effects of resin variables and extrusion conditions. J Appl Polym Sci 81:2944–2963

    Article  Google Scholar 

  7. Johnson MB, Wilkes GL (2002) Microporous membranes of polyoxymethylene from a melt-extrusion process: (II) effects of thermal annealing and stretching on porosity. J Appl Polym Sci 84:1762–1780

    Article  Google Scholar 

  8. Johnson MB, Wilkes GL (2002) Microporous membranes of isotactic poly(4-methyl-1-pentene) from a melt-extrusion process. I. Effects of resin variables and extrusion conditions. J Appl Polym Sci 83:2095–2113

    Article  Google Scholar 

  9. Hashimoto A, Yagi K, Mantoku H (2000) Porous film of high molecular weight polyolefin and process for producing same. US Patent 6,048,607

    Google Scholar 

  10. Xu M, Hu S, Guan J, Sun X, Wu W, Zhu W, Zhang X, Ma Z, Han Q, Liu S (1992) Polypropylene microporous film. US Patent 5,134,174

    Google Scholar 

  11. Chu F, Yamaoka T (1996) Polychloroprene ‘popcorn’ growth kinetics measured by the McBain balance. Polymer 37:537–539

    Article  Google Scholar 

  12. Fisher HM, Wensley CG (2002) Polypropylene microporous membrane for battery separator. US Patent 6,368,742

    Google Scholar 

  13. Jacoby P, Bauer CW, Clingman, SR, Tapp, WT (1994) Oriented polymeric microporous films US Patent 5,317,035

    Google Scholar 

  14. Yu WC, Geiger MW (1996) Shutdown, bilayer battery separator. US Patent 5,565,281

    Google Scholar 

  15. Chandavasu C, Xanthos M, Sirkar KK, Gogos CG (2000) Preparation of microporous films from immiscible blends via melt processing. J Plast Film Sheeting 16:288–300

    Article  Google Scholar 

  16. Higuchi H, Matsushita K, Ezoe M, Shinomura T (1995) Porous film, process for producing the same, and use of the same. US Patent 5,385,777

    Google Scholar 

  17. Chandavasu C, Xanthos M, Sirkar KK, Gogos C (2004) Preparation of microporous films from immiscible blends via melt processing and stretching. US Patent 6,824,680

    Google Scholar 

  18. Kaimai N, Takita K, Kono K, Funaoka H (2000) Method of producing highly permeable microporous polyolefin membrane. US Patent 6,153,133

    Google Scholar 

  19. Takita K, Kono K, Takashima T, Okamoto K (1991) Microporous polyolefin membrane and method of producing same. US Patent 5,051,183

    Google Scholar 

  20. Jacoby P, Bauer CW, Clingman SR, Tapp WT (1993) Oriented polymeric microporous films. US Patent 5,176,953

    Google Scholar 

  21. Ihm DW, Noh JG, Kim JY (2002) Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery. J Power Sources 109:388–393

    Article  Google Scholar 

  22. Doi Y, Fugii O, Kaneko S, Hanamura T (1980) Microporous film battery separator. US Patent 4,210,709

    Google Scholar 

  23. Nishimura Y, Segawa T (2006) Separator for metal halogen cell. US Patent 7,081,321

    Google Scholar 

  24. Funaoka H, Takita K, Kaimai N, Kobayashi S, Kono K (2003) Microporous polyolefin film and process for producing the same. US Patent 6,666,969

    Google Scholar 

  25. Data sheet of Celgard microporous membranes, http://www.celgard.com/

  26. Kimishima K, Yaniyama Y, Lesniewski ME, Brant P, Kono K (2006) Advanced automotive battery and ultracapacitor conference (AABC—06), Baltimore

    Google Scholar 

  27. Callahan RW, Call RW, Harleson KJ, Yu TH (2003) Battery separators with reduced splitting propensity. US Patent 6,602,593

    Google Scholar 

  28. Kaimai N, Takita K, Kono K (1998) Method of producing of microporous polyolefin membrane. US Patent 5,830,554

    Google Scholar 

  29. Lundquist JT, Lundsager CB, Palmer NI, Troffkin HJ, Howard J (1987) Battery separator. US Patent 4,650,730

    Google Scholar 

  30. Lundquist JT, Lundsager CB, Palmer N, Troffkin HJ (1988) Battery separator. US Patent 4,731,304

    Google Scholar 

  31. Yu WC, Dwiggins CF (1997) Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby. US Patent 5,667,911

    Google Scholar 

  32. Yu WC (1997) Shutdown, trilayer battery separator. US Patent 5,691,077

    Google Scholar 

  33. Yu TH (2000) Trilayer battery separator. US Patent 6,080,507

    Google Scholar 

  34. Yu WC (2005) Continuous methods of making microporous battery separators. US Patent 6,878,226

    Google Scholar 

  35. Kinouchi M, Akazawa T, Oe T, Kogure R, Kawabata K, Nakakita Y (2003) Battery separator and lithium secondary battery. US Patent 6,627,346

    Google Scholar 

  36. Spotnitz RM (2001) Trilayer battery separator. US Patent 6,180,280

    Google Scholar 

  37. Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77:34–41

    Article  Google Scholar 

  38. Abraham KM, Alamgir M, Hoffman DK (1995) Polymer electrolytes reinforced by Celgard membranes. J Electrochem Soc 142:683–687

    Article  Google Scholar 

  39. Taskier HT (1982) Hydrophilic polymer coated microporous membranes capable of use as a battery separator. US Patent 4,359,510

    Google Scholar 

  40. Kim DW, Ko JM, Chun JH, Kim SH, Park JK (2001) Electrochemical performances of lithium-ion cells prepared with polyethylene oxide-coated separators. Electrochem Commun 3:535–538

    Article  Google Scholar 

  41. Kim DW, Noh KA, Chun JH, Kim SH, Ko JM (2001) Highly conductive polymer electrolytes supported by microporous membrane. Solid State Ionics 144:329–337

    Article  Google Scholar 

  42. Oh JS, Kang YK, Kim DW (2006) Lithium polymer batteries using the highly porous membrane filled with solvent-free polymer electrolyte. Electrochim Acta 52:1567–1570

    Article  Google Scholar 

  43. Eschbach FO, Oliver M (1997) Gel electrolyte bonded rechargeable electrochemical cell and method of making same. US Patent 5,681,357

    Google Scholar 

  44. Hamano K, Shiota H, Shiraga S, Aihara S, Yoshida Y, Murai M, Inuzuka T (1999) Lithium ion secondary battery and method of fabricating thereof. US Patent 5,981,107

    Google Scholar 

  45. Kim JY, Kim SK, Lee SJ, Lee SY, Lee HM, Ahn S (2004) Preparation of micro-porous gel polymer for lithium ion polymer battery. Electrochim Acta 50:363–366

    Article  Google Scholar 

  46. Jeong YB, Kim DW (2004) Effect of thickness of coating layer on polymer-coated separator on cycling performance of lithium-ion polymer cells. J Power Sources 128:256–262

    Article  Google Scholar 

  47. Zhang SS, Tran DT (2013) How a gel polymer electrolyte affects performance of lithium/sulfur batteries. Electrochim Acta 114:296–302

    Article  Google Scholar 

  48. Gineste JL, Pourcelly G (1995) Polypropylene separator grafted with hydrophilic monomers for lithium batteries. J Membrane Sci 107:155–164

    Article  Google Scholar 

  49. Ko JM, Min BG, Kim DW, Ryu KS, Kim KM, Le YG, Chang SH (2004) Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate. Electrochim Acta 50:367–370

    Article  Google Scholar 

  50. Gao K, Hu GX, Yi TF, Dai CS (2006) PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochem Acta 52:443–449

    Article  Google Scholar 

  51. Man C, Jiang P, K-w Wong, Zhao Y, Tang C, Fan M, Lau WM, Mei J, Li S, Liu H, Hui D (2014) Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide). J Mater Chem A 2:11980–11986

    Article  Google Scholar 

  52. Li B, Gao J, Wang X, Fan C, Wang H, Liu X (2014) Surface modification of polypropylene battery separator by direct fluorination with different gas components. Appl Surf Sci 290:137–141

    Article  Google Scholar 

  53. Fang J, Kelarakis A, Lin YW, Kang CY, Yang MH, Cheng CL, Wang Y, Giannelis EP, Tsai LD (2011) Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance. Phys Chem Chem Phys 13:14457–14461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Shui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xue, Z., Zhang, Z., Zhang, S.S. (2015). Manufacture and Surface Modification of Polyolefin Separator. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics