Skip to main content

Solid-State Lithium Ion Electrolytes

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Lithium-ion batteries are the state-of-the-art power sources for portable electronics, and are considered as the most promising storage systems for automotive, and even for smart grids. At present, however, they have still serious safety problems, that are chiefly due to the presence of liquid or gel flammable and volatile chemicals in the electrolyte compartment. For this reason, the search for all solid-state lithium electrolytes has gained a renewed attention. In this chapter, we discuss the three main classes which at present are under study and development: (i) ceramic, (ii) glassy, and (iii) solvent-free polymer electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DOE/EPRI 2013 Electricity Storage Handbook

    Google Scholar 

  2. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Article  Google Scholar 

  3. Hayashi A, Noi K, Sakuda A, Tatsumisago M (2012) Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun 3:856–860

    Article  Google Scholar 

  4. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sour 195:4554–4569

    Article  Google Scholar 

  5. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540

    Article  Google Scholar 

  6. Cussen EJ (2010) Structure and ionic conductivity in lithium garnets. J Mater Chem 20:5167–5173

    Article  Google Scholar 

  7. Cao C, Li Z-B, Wang X-L et al (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 25:1–10

    Google Scholar 

  8. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43:4714–4727

    Article  Google Scholar 

  9. Kamaya N, Homma K, Yamakawa Y et al (2011) A lithium superionic conductor. Nat Mater 10:682–686

    Article  Google Scholar 

  10. Magistris A (1993) Ionic conduction in glasses. In: Scrosati B, Magistris A, Mari CM, Mariotto G (eds) Fast ion transport in solids: proceedings of the NATO advanced research workshop, Belgirate, Italy. NATO Science Series E, vol 250. Kluwer, Dordrecht, pp 120–132, 20–26 September 1992

    Google Scholar 

  11. Chandra A, Bhatt A, Chandra A (2013) Ion conduction in superionic glassy electrolytes: an overview. J Mater Sci Technol 29:193–208

    Article  Google Scholar 

  12. Belous AG, Novitskaya GN, Polyanetskaya SV et al (1987) Study of complex oxides with the composition La2/3−x Li3x TiO3. Inorg Mater 23:412–415

    Google Scholar 

  13. Inaguma Y, Chen L, Itoh M et al (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693

    Article  Google Scholar 

  14. Kawai H, Kuwano J (1994) Lithium ion conductivity of A-site deficient perovskite solid-solution La0.67−x Li3x TiO3. J Electrochem Soc 141:L78–L79

    Article  Google Scholar 

  15. Gao X, Fisher CAJ, Kimura T et al (2013) Lithium atom and A-site vacancy distributions in lanthanum lithium titanate. Chem Mater 25:1607–1614

    Article  Google Scholar 

  16. Bohnke O (2008) The fast lithium-ion conducting oxides Li3x La2/3−x TiO3 from fundamentals to application. Solid State Ionics 179:9–15

    Article  Google Scholar 

  17. Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15:3974–3990

    Article  Google Scholar 

  18. Alonso JA, Sanz J, Santamaria J et al (2000) On the location of Li+ cations in the fast Li-cation conductor La0.5Li0.5TiO3 perovskite. Angew Chem Int Ed 39:619–621

    Article  Google Scholar 

  19. Emery J, Buzare JY, Bohnke O et al (1997) Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes. Solid State Ionics 99:41–51

    Article  Google Scholar 

  20. Harada Y, Hirakoso Y, Kawai H et al (1999) Order-disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67−x Li3x TiO3 (x = 0.11). Solid State Ionics 121:245–251

    Article  Google Scholar 

  21. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916

    Article  Google Scholar 

  22. Inaguma Y, Nakashima M (2013) A rechargeable lithium-air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. J Power Sour 228:250–255

    Article  Google Scholar 

  23. Thangadurai V, Kaack H, Weppner WJF (2003) Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc 86:437–440

    Article  Google Scholar 

  24. Cussen EJ (2006) The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. Chem Commun 4:412–413

    Article  Google Scholar 

  25. Ramzy A, Thangadurai V (2010) Tailor-made development of fast Li Ion conducting garnet-like solid electrolytes. ACS Appl Mater Interfaces 2:385–390

    Article  Google Scholar 

  26. Aatiq A, Menetrier M, Croguennec L et al (2002) On the structure of Li3Ti2(PO4)3. J Mater Chem 12:2971–2978

    Google Scholar 

  27. Aono H, Sugimoto E, Sadaoka Y et al (1991) Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3). Solid State Ionics 47:257–264

    Article  Google Scholar 

  28. Shimonishi Y, Zhang T, Imanishi N et al (2011) A study on lithium/air secondary batteries–stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sour 196:5128–5132

    Article  Google Scholar 

  29. Robertson AD, West AR, Ritchie AG (1997) Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ionics 104:1–11

    Article  Google Scholar 

  30. Kanno R, Hata T, Kawamoto Y, Irie M (2000) Synthesis of a new lithium ionic conductor, thio-LISICON lithium germanium sulfide system. Solid State Ionics 130:97–104

    Article  Google Scholar 

  31. Murayama M, Kanno R, Kawamoto Y, Kamiyama T (2002) Structure of the thio-LISICON, Li4GeS4. Solid State Ionics 154–155:789–794

    Article  Google Scholar 

  32. Murayama M, Kanno R, Irie M, Ito S, Hata T, No Sonoyama, Kawamoto Y (2002) Synthesis of new lithium ionic conductor Thio-LISICON—lithium silicon sulfides system. J Solid State Chem 168:140–148

    Article  Google Scholar 

  33. Warburg E (1913) Über die Diffusion von Metallen in Glas. Ann Phys 40:327–334

    Article  Google Scholar 

  34. Kunze D (1973) Silver ion conducting electrolyte with glass-like structure. In: Van Gool W (ed) Fast ion transport in solids. North Holland, Amsterdam, pp 405–408

    Google Scholar 

  35. Chiodelli G, Magistris A, Schiraldi A (1974) Some solid electrolyte cells. Electrochim Acta 19:655–656

    Article  Google Scholar 

  36. Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841–3851

    Article  Google Scholar 

  37. Tomasi C, Mustarelli P, Magistris A (1998) Devitrification and metastability: revisiting the phase diagram of the system AgI:Ag2MoO4. J Solid State Chem 140:91–96

    Google Scholar 

  38. Barney ER, Hannon AC, Holland D, Winslow D, Rjial B, Affatigato M, Feller SA (2007) Structural studies of lead aluminate glasses. J Non-Cryst Solids 353:1741–1747

    Google Scholar 

  39. Mustarelli P, Quartarone E, Benevelli F (1997) A 11B and 7Li MAS-NMR study of sol-gel lithium triborate glass subjected to thermal densification. Mat Res Bull 32:679–687

    Article  Google Scholar 

  40. Hayashi A, Hama S, Morimoto H et al (2001) Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J Am Ceram Soc 84:477–479

    Article  Google Scholar 

  41. Anderson OL, Stuart DA (1954) Calculation of activation energy of ionic conductivity in silica glasses by classical methods. J Am Ceram Soc 37:573–780

    Article  Google Scholar 

  42. Martin SW (1988) Conductivity activation energy relations in high sodium-content borate and aluminoborate glasses. J Am Ceram Soc 71:438–445

    Article  Google Scholar 

  43. Ravaine D, Souquet JL (1977) A thermodynamic approach to ionic conductivity in oxide glasses. Part. 1. Correlation of the ionic conductivity with the chemical potential of constituents in binary alkali oxide glasses. Phys Chem Glasses 18:27–31

    Google Scholar 

  44. Ravaine D, Souquet JL (1978) A thermodynamic approach to ionic conductivity in oxide glasses. Part. 2. A statistical model for the variations of the chemical potential of constituents in binary alkali oxide glasses. Phys Chem Glasses 19:115–120

    Google Scholar 

  45. Martin SW, Angell CA (1986) Dc and ac conductivity in wide composition range Li2O-P2O5 glasses. J Non-Cryst Solids 83:185–207

    Article  Google Scholar 

  46. Haven Y, Verkerk B (1965) Diffusion and electrical conductivity of sodium ions in sodium silicate glasses. Phys Chem Glasses 6:38–45

    Google Scholar 

  47. Charles RJ (1961) Polarization and diffusion in silicate glasses. J Appl Phys 32:1115–1126

    Article  Google Scholar 

  48. Moynihan CT, Lesikar AV (1981) Weak-electrolyte models for the mixed alkali effectin glass. J Am Ceram Soc 64:40–46

    Article  Google Scholar 

  49. Nassau K, Glass AM, Grasso M et al (1981) Quenched lithium-containing multiple sulphate glasses. J Non-Cryst Solids 46:45–58

    Article  Google Scholar 

  50. Angell CA (1986) Recent developments in fast ion transport in glassy and amorphous materials. Solid State Ionics 18&19:72–88

    Article  Google Scholar 

  51. Kawamura J, Shimoji M (1986) Ionic conductivity and glass transition in superionic conducting glasses (Agi)1−x (Ag2MoO4) x (x = 0.25, 0.30, 0.35): I. Experimental results in the liquid and glassy states. J Non-Cryst Solids 88:281–294

    Article  Google Scholar 

  52. Ingram MD, Mackenzie MA, Muller W et al (1988) Cluster and pathways: a new approach to ion migration in glass. Solid State Ionics 28–30:677–680

    Article  Google Scholar 

  53. Senapati H, Parthasarathy G, Lakshmikumar SK et al (1983) Effect of pressure on the fast-ion conduction in silver iodide-silver oxide-molybdenum oxide glasses. Phil Mag B 47:291–297

    Article  Google Scholar 

  54. Bunde A, Ingram MD, Maass P et al (1991) Mixed alkali effects in ionic conductors: a new model and computer simulations. J Non-Cryst Solids 131:1109–1112

    Article  Google Scholar 

  55. Maass P, Bunde A, Ingram MD (1992) Ion transport anomalies in glasses. Phys Rev Lett 68:3064–3067

    Article  Google Scholar 

  56. Funke K, Banhatti RD, Radha D (2006) Ionic motion in materials with disordered structures. Solid State Ionics 177:1551–1557

    Article  Google Scholar 

  57. Mustarelli P, Tomasi C, Magistris A (2005) Fractal nanochannels as the basis of the ionic transport in AgI-based glasses. J Phys Chem B 109:17417–17421

    Article  Google Scholar 

  58. St Adams, Swenson J (2000) Determining ionic conductivity from structural models of fast ionic conductors. Phys Rev Lett 84:4144–4147

    Article  Google Scholar 

  59. Button DP, Tandon RP, Tuller HL et al (1981) Fast Li+ conductance in chloroborate glasses II-diborates and metaborates. Solid State Ionics 5:655–658

    Article  Google Scholar 

  60. Magistris A, Chiodelli G, Villa M (1985) Lithium borophosphate vitreous electrolytes. J Power Sour 14:87–91

    Article  Google Scholar 

  61. Desphande V, Pradel A, Ribes M (1988) The mixed glass former effect in the Li2S:SiS2:GeS system. Mat Res Bull 23:379–384

    Article  Google Scholar 

  62. Yamauchi A, Sakuda A, Hayashi A, Tatsumisago M (2013) Preparation and ionic conductivities of (100 − x)(0.75Li2S:0.25P2S5):xLiBH4 glass electrolytes. J Power Sour 244:707–710

    Article  Google Scholar 

  63. Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium superion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7:627–631

    Article  Google Scholar 

  64. Maranas JK (2012) Polyelectrolytes for batteries: current state of understanding. In Page K (ed) Polymers for energy storage and delivery: polyelectrolytes and fuel cells. ACS Symposium Series. American Chemical Society, Washington

    Google Scholar 

  65. Armand M, Chabagno JM, Duclot MJ (1979). In: Vashishta P (ed) Fast ion transport in solids. North Holland, New York

    Google Scholar 

  66. Gray FM (1997) Polymer electrolytes. Roy Soc Chem, London

    Google Scholar 

  67. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462

    Article  Google Scholar 

  68. Armand MB, Bruce PG, Forsyth M et al (2011) Polymer electrolytes in energy materials. In: Bruce DW, O’Hare D, Walton RI (eds) Wiley, Chichester

    Google Scholar 

  69. Hollinan DT, Balsara NP (2013) Polymer electrolytes. Annu Rev Mater Res 43:503–525

    Article  Google Scholar 

  70. Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124

    Article  Google Scholar 

  71. Christie AM, Lilley SJ, Staunton E et al (2005) Increasing the conductivity of crystalline polymer electrolytes. Nature 433:50–53

    Article  Google Scholar 

  72. Mazor H, Golodnitsky D, Peled E et al (2008) A search for single-ion conducting polymer electrolyte: combined effect of anion trap and inorganic filler. J Power Sour 178:736–743

    Article  Google Scholar 

  73. Quartarone E, Mustarelli P (2014) Polyelectrolytes for batteries, encyclopedia of polymeric nanomaterials. Springer, Berlin, pp 1–10

    Book  Google Scholar 

  74. Gomez ED, Panday A, Feng EH et al (2009) Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett 9:1212–1216

    Article  Google Scholar 

  75. Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite electrolytes. Solid State Ionics 110:1–14

    Article  Google Scholar 

  76. Ohno H (2007) Design of ion conductive polymers based on ionic liquids. Macromol Symp 249–250:551–556

    Article  Google Scholar 

  77. Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Progr Pol Sci 36:1629–1648

    Article  Google Scholar 

  78. Fourquet JL, Duroy H, Crosnier-Lopez MP (1996) Structural and microstructural studies of the series La2/3−x Li3x□1/3−2xTiO3. J Solid State Chem 127:283–294

    Article  Google Scholar 

  79. Inaguma Y, Katsumata T, Itoh M et al (2002) Crystal structure of a lithium ion-conducting perovskite La2/3−x Li3x TiO3 (x = 0.05). J Solid State Chem 166:67–72

    Article  Google Scholar 

  80. Tiyapiboonchaiya C, Pringle JM, Sun J et al (2004) The zwitterion effect in high-conductivity polyelectrolytes materials. Nat Mater 3:29–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mustarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tealdi, C., Quartarone, E., Mustarelli, P. (2015). Solid-State Lithium Ion Electrolytes. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics